Stochastic Galerkin method and port-Hamiltonian form for linear first-order ordinary differential equations

IF 1.5 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal for Uncertainty Quantification Pub Date : 2024-02-01 DOI:10.1615/int.j.uncertaintyquantification.2024050099
Roland Pulch, Olivier Sète
{"title":"Stochastic Galerkin method and port-Hamiltonian form for linear first-order ordinary differential equations","authors":"Roland Pulch, Olivier Sète","doi":"10.1615/int.j.uncertaintyquantification.2024050099","DOIUrl":null,"url":null,"abstract":"We consider linear first-order systems of ordinary differential equations (ODEs) in port-Hamiltonian (pH) form. Physical parameters are remodelled as random variables to conduct an uncertainty quantification. A stochastic Galerkin projection yields a larger deterministic system of ODEs, which does not exhibit a pH form in general. We apply transformations of the original systems such that the stochastic Galerkin projection becomes structure-preserving. Furthermore, we investigate meaning and properties of the Hamiltonian function belonging to the stochastic Galerkin system. A large number of random variables implies a high-dimensional stochastic Galerkin system, which suggests itself to apply model order reduction (MOR) generating a low-dimensional system of ODEs. We discuss structure preservation in projection-based MOR, where the smaller systems of ODEs feature pH form again. Results of numerical computations are presented using two test examples.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"27 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024050099","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider linear first-order systems of ordinary differential equations (ODEs) in port-Hamiltonian (pH) form. Physical parameters are remodelled as random variables to conduct an uncertainty quantification. A stochastic Galerkin projection yields a larger deterministic system of ODEs, which does not exhibit a pH form in general. We apply transformations of the original systems such that the stochastic Galerkin projection becomes structure-preserving. Furthermore, we investigate meaning and properties of the Hamiltonian function belonging to the stochastic Galerkin system. A large number of random variables implies a high-dimensional stochastic Galerkin system, which suggests itself to apply model order reduction (MOR) generating a low-dimensional system of ODEs. We discuss structure preservation in projection-based MOR, where the smaller systems of ODEs feature pH form again. Results of numerical computations are presented using two test examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性一阶常微分方程的随机伽勒金法和端口-哈密顿形式
我们考虑的是端口-哈密尔顿(pH)形式的线性一阶常微分方程(ODE)系统。物理参数被重塑为随机变量,以进行不确定性量化。随机伽勒金投影产生了一个更大的确定性 ODE 系统,该系统一般不呈现 pH 形式。我们对原始系统进行了变换,从而使随机伽勒金投影变得具有结构保护性。此外,我们还研究了属于随机 Galerkin 系统的哈密顿函数的含义和性质。大量的随机变量意味着一个高维的随机 Galerkin 系统,这就建议应用模型阶次削减(MOR)生成一个低维的 ODE 系统。我们讨论了基于投影的 MOR 中的结构保持,其中较小的 ODE 系统再次以 pH 形式为特征。通过两个测试实例介绍了数值计算的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Uncertainty Quantification
International Journal for Uncertainty Quantification ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.60
自引率
5.90%
发文量
28
期刊介绍: The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.
期刊最新文献
Bayesian³ Active learning for regularized arbitrary multi-element polynomial chaos using information theory Sobol’ sensitivity indices– A Machine Learning approach using the Dynamic Adaptive Variances Estimator with Given Data Extremes of vector-valued processes by finite dimensional models A novel probabilistic transfer learning strategy for polynomial regression Variance-based sensitivity of Bayesian inverse problems to the prior distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1