{"title":"Gradient-based kernel variable selection for support vector hazards machine","authors":"Sanghun Jeong, Kyungjun Kang, Hojin Yang","doi":"10.1007/s42952-024-00256-5","DOIUrl":null,"url":null,"abstract":"<p>This study aims to improve the predictive performance for the event time through the machine learning model and find informative variables in the time-to-event data, simultaneously. To address this issue, after regarding the time-to-event data as the dichotomized counting processes data for predicting survival time, we consider the time-dependent support vector machine (SVM) framework for the dichotomized counting process data, where the decision function in this framework consists of the time-independent risk score and time-dependent intercept. Also, we consider the empirical partial derivative of the risk score function with respect to each marginal predictor as the indicator for the important predictor. Through this approach, it is possible to predict survival time and find variables that affect on the survival time at the same time. Simulation studies were conducted to confirm the performance of the model, and real data analysis was conducted by predicting the survival time of the lung cancer after the diagnosis and selecting genes associate with lung cancer through human gene data.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"276 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00256-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to improve the predictive performance for the event time through the machine learning model and find informative variables in the time-to-event data, simultaneously. To address this issue, after regarding the time-to-event data as the dichotomized counting processes data for predicting survival time, we consider the time-dependent support vector machine (SVM) framework for the dichotomized counting process data, where the decision function in this framework consists of the time-independent risk score and time-dependent intercept. Also, we consider the empirical partial derivative of the risk score function with respect to each marginal predictor as the indicator for the important predictor. Through this approach, it is possible to predict survival time and find variables that affect on the survival time at the same time. Simulation studies were conducted to confirm the performance of the model, and real data analysis was conducted by predicting the survival time of the lung cancer after the diagnosis and selecting genes associate with lung cancer through human gene data.
期刊介绍:
The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.