Enabling uncertainty estimation in neural networks through weight perturbation for improved Alzheimer's disease classification

IF 2.5 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Neuroinformatics Pub Date : 2024-02-06 DOI:10.3389/fninf.2024.1346723
Matteo Ferrante, Tommaso Boccato, Nicola Toschi
{"title":"Enabling uncertainty estimation in neural networks through weight perturbation for improved Alzheimer's disease classification","authors":"Matteo Ferrante, Tommaso Boccato, Nicola Toschi","doi":"10.3389/fninf.2024.1346723","DOIUrl":null,"url":null,"abstract":"BackgroundThe willingness to trust predictions formulated by automatic algorithms is key in a wide range of domains. However, a vast number of deep architectures are only able to formulate predictions without associated uncertainty.PurposeIn this study, we propose a method to convert a standard neural network into a Bayesian neural network and estimate the variability of predictions by sampling different networks similar to the original one at each forward pass.MethodsWe combine our method with a tunable rejection-based approach that employs only the fraction of the data, i.e., the share that the model can classify with an uncertainty below a user-set threshold. We test our model in a large cohort of brain images from patients with Alzheimer's disease and healthy controls, discriminating the former and latter classes based on morphometric images exclusively.ResultsWe demonstrate how combining estimated uncertainty with a rejection-based approach increases classification accuracy from 0.86 to 0.95 while retaining 75% of the test set. In addition, the model can select the cases to be recommended for, e.g., expert human evaluation due to excessive uncertainty. Importantly, our framework circumvents additional workload during the training phase by using our network “turned into Bayesian” to implicitly investigate the loss landscape in the neighborhood of each test sample in order to determine the reliability of the predictions.ConclusionWe believe that being able to estimate the uncertainty of a prediction, along with tools that can modulate the behavior of the network to a degree of confidence that the user is informed about (and comfortable with), can represent a crucial step in the direction of user compliance and easier integration of deep learning tools into everyday tasks currently performed by human operators.","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"50 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1346723","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundThe willingness to trust predictions formulated by automatic algorithms is key in a wide range of domains. However, a vast number of deep architectures are only able to formulate predictions without associated uncertainty.PurposeIn this study, we propose a method to convert a standard neural network into a Bayesian neural network and estimate the variability of predictions by sampling different networks similar to the original one at each forward pass.MethodsWe combine our method with a tunable rejection-based approach that employs only the fraction of the data, i.e., the share that the model can classify with an uncertainty below a user-set threshold. We test our model in a large cohort of brain images from patients with Alzheimer's disease and healthy controls, discriminating the former and latter classes based on morphometric images exclusively.ResultsWe demonstrate how combining estimated uncertainty with a rejection-based approach increases classification accuracy from 0.86 to 0.95 while retaining 75% of the test set. In addition, the model can select the cases to be recommended for, e.g., expert human evaluation due to excessive uncertainty. Importantly, our framework circumvents additional workload during the training phase by using our network “turned into Bayesian” to implicitly investigate the loss landscape in the neighborhood of each test sample in order to determine the reliability of the predictions.ConclusionWe believe that being able to estimate the uncertainty of a prediction, along with tools that can modulate the behavior of the network to a degree of confidence that the user is informed about (and comfortable with), can represent a crucial step in the direction of user compliance and easier integration of deep learning tools into everyday tasks currently performed by human operators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过权重扰动实现神经网络中的不确定性估计,从而改进阿尔茨海默病分类
背景对自动算法所做预测的信任度是众多领域的关键。在本研究中,我们提出了一种将标准神经网络转换为贝叶斯神经网络的方法,并通过在每次前向传递时采样与原始网络类似的不同网络来估计预测的可变性。方法我们将我们的方法与基于可调剔除的方法相结合,该方法仅采用数据的一部分,即模型可以分类的不确定性低于用户设置阈值的份额。我们在一大批阿尔茨海默病患者和健康对照者的大脑图像中测试了我们的模型,并完全根据形态计量图像区分了前者和后者。此外,由于不确定性过大,该模型还可以选择推荐的案例,例如进行专家人工评估。重要的是,我们的框架通过使用 "变成贝叶斯 "的网络来隐式地调查每个测试样本附近的损失情况,从而确定预测的可靠性,从而避免了训练阶段的额外工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neuroinformatics
Frontiers in Neuroinformatics MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
4.80
自引率
5.70%
发文量
132
审稿时长
14 weeks
期刊介绍: Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states. Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.
期刊最新文献
Quantitative assessment of neurodevelopmental maturation: a comprehensive systematic literature review of artificial intelligence-based brain age prediction in pediatric populations. Spectral graph convolutional neural network for Alzheimer's disease diagnosis and multi-disease categorization from functional brain changes in magnetic resonance images. Commentary: Accelerating spiking neural network simulations with PymoNNto and PymoNNtorch. Fuzzy C-means clustering algorithm applied in computed tomography images of patients with intracranial hemorrhage. Early detection of mild cognitive impairment through neuropsychological tests in population screenings: a decision support system integrating ontologies and machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1