Mechanical Properties of Sintered Al–Sn–Fe Alloys

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Physical Mesomechanics Pub Date : 2024-02-08 DOI:10.1134/S1029959924010077
N. M. Rusin, A. L. Skorentsev, K. O. Akimov
{"title":"Mechanical Properties of Sintered Al–Sn–Fe Alloys","authors":"N. M. Rusin,&nbsp;A. L. Skorentsev,&nbsp;K. O. Akimov","doi":"10.1134/S1029959924010077","DOIUrl":null,"url":null,"abstract":"<p>The paper analyzes the features of plastic flow in compression in sintered Al–Sn–Fe alloys, some of which were exposed to compaction in a closed die at a pressure of 300 MPa and temperature of 250°C, and some to equal-channel angular pressing by route A (ECAP-A) at the same temperature. The analysis shows that the sintered composites comprise agglomerates of Sn-cemented Al<sub>3</sub>Fe particles formed in place of Fe powder particles due to the interaction of Al and Fe in sintering. The agglomerates are strong but sufficiently ductile, due to Sn, to survive under deformation and to efficiently impede the propagation of strain localization bands and microcracks. In compression, such agglomerates in Al<i>–</i>20Sn<i>–</i>17Al<sub>3</sub>Fe hold their form, moving as solid units, while the composite displays good ductility. In ECAP-A, they extend in the direction of plastic flow, and this adversely affects their ductility in further compression.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 1","pages":"69 - 78"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924010077","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper analyzes the features of plastic flow in compression in sintered Al–Sn–Fe alloys, some of which were exposed to compaction in a closed die at a pressure of 300 MPa and temperature of 250°C, and some to equal-channel angular pressing by route A (ECAP-A) at the same temperature. The analysis shows that the sintered composites comprise agglomerates of Sn-cemented Al3Fe particles formed in place of Fe powder particles due to the interaction of Al and Fe in sintering. The agglomerates are strong but sufficiently ductile, due to Sn, to survive under deformation and to efficiently impede the propagation of strain localization bands and microcracks. In compression, such agglomerates in Al20Sn17Al3Fe hold their form, moving as solid units, while the composite displays good ductility. In ECAP-A, they extend in the direction of plastic flow, and this adversely affects their ductility in further compression.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烧结 Al-Sn-Fe 合金的机械性能
摘要 本文分析了烧结 Al-Sn-Fe 合金在压缩过程中的塑性流动特征,其中一些合金在压力为 300 兆帕和温度为 250 摄氏度的封闭模具中进行了压制,而另一些合金则在相同温度下通过路线 A(ECAP-A)进行了等通道角压。分析表明,烧结复合材料由取代铁粉颗粒的锡增强 Al3Fe 颗粒团聚体组成,这是由于 Al 和铁在烧结过程中发生了相互作用。这些团聚体强度很高,但由于Sn的存在而具有足够的韧性,因此能够在变形条件下存活,并有效地阻止应变局部带和微裂纹的扩展。在压缩过程中,Al-20Sn-17Al3Fe 中的这种团聚体保持其形状,作为固态单元移动,同时复合材料显示出良好的延展性。而在 ECAP-A 中,它们向塑性流动方向延伸,这对进一步压缩时的延展性产生了不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
期刊最新文献
Evaluation of the Effective Mechanical Properties of a Particle-Reinforced Polymer Composite with Low-Modulus Inclusions Absorption of Impact and Shear Energy by Crystal Lattices of Mechanically Activated Inorganic Substances: A Review Multiscale Modeling and Computer-Aided Design of Advanced Materials with Hierarchical Structure Microstructural Deformation and Fracture of Reduced Activation Ferritic-Martensitic Steel EK-181 under Different Heat Treatment Conditions Synthesis of Porous Composites Based on Electroexplosive Ti/Al Nanopowder for Bone Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1