Generalized quantum geometric tensor in a non-Hermitian exciton-polariton system [Invited]

IF 2.8 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Optical Materials Express Pub Date : 2024-02-12 DOI:10.1364/ome.497010
Y.-M. Robin Hu, Elena A. Ostrovskaya, and Eliezer Estrecho
{"title":"Generalized quantum geometric tensor in a non-Hermitian exciton-polariton system [Invited]","authors":"Y.-M. Robin Hu, Elena A. Ostrovskaya, and Eliezer Estrecho","doi":"10.1364/ome.497010","DOIUrl":null,"url":null,"abstract":"In this work, we review different generalizations of the quantum geometric tensor (QGT) in two-band non-Hermitian systems and propose a protocol for measuring them in experiments. We present the generalized QGT components, i.e., the quantum metric and Berry curvature, for a non-Hermitian hybrid photonic (exciton-polariton) system and show that the generalized non-Hermitian QGT can be constructed from experimental observables. In particular, we extend the existing method of measuring the QGT that uses the pseudospins in photonic and exciton-polariton systems by suggesting a method to construct the left eigenstates from experiments. We also show that the QGT components have clear signatures in wave-packet dynamics, where the anomalous Hall drift arises from both the non-Hermitian Berry curvature and Berry connection, suggesting that both left and right eigenstates are necessary for defining non-Hermitian band geometries and topologies.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"42 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.497010","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we review different generalizations of the quantum geometric tensor (QGT) in two-band non-Hermitian systems and propose a protocol for measuring them in experiments. We present the generalized QGT components, i.e., the quantum metric and Berry curvature, for a non-Hermitian hybrid photonic (exciton-polariton) system and show that the generalized non-Hermitian QGT can be constructed from experimental observables. In particular, we extend the existing method of measuring the QGT that uses the pseudospins in photonic and exciton-polariton systems by suggesting a method to construct the left eigenstates from experiments. We also show that the QGT components have clear signatures in wave-packet dynamics, where the anomalous Hall drift arises from both the non-Hermitian Berry curvature and Berry connection, suggesting that both left and right eigenstates are necessary for defining non-Hermitian band geometries and topologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非赫米提激子-极化子系统中的广义量子几何张量 [特邀]
在这项工作中,我们回顾了双波段非赫米提系统中量子几何张量(QGT)的不同广义,并提出了在实验中测量它们的方案。我们提出了非ermitian 混合光子(激子-极化子)系统的广义 QGT 成分,即量子度量和贝里曲率,并证明广义非ermitian QGT 可以通过实验观测值构建。特别是,我们扩展了利用光子和激子-极化子系统中的伪自旋来测量 QGT 的现有方法,提出了一种从实验中构建左特征状态的方法。我们还表明,QGT 成分在波包动力学中具有明显的特征,其中的反常霍尔漂移源于非赫米提贝里曲率和贝里连接,这表明左特征状态和右特征状态对于定义非赫米提带几何和拓扑结构都是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials Express
Optical Materials Express MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
5.50
自引率
3.60%
发文量
377
审稿时长
1.5 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to: Artificially engineered optical structures Biomaterials Optical detector materials Optical storage media Materials for integrated optics Nonlinear optical materials Laser materials Metamaterials Nanomaterials Organics and polymers Soft materials IR materials Materials for fiber optics Hybrid technologies Materials for quantum photonics Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.
期刊最新文献
2023 Optical Materials Express Emerging Researcher Best Paper Prize: editorial Enhanced p-type conductivity of hexagonal boron nitride by an efficient two-step doping strategy On the thermal stability of multilayer optics for use with high X-ray intensities Femtosecond laser synthesis of YAG:Ce3+ nanoparticles in liquid Silicon nanohole based enhanced light absorbers for thin film solar cell applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1