Time-Space Lower Bounds for Finding Collisions in Merkle–Damgård Hash Functions

IF 2.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Journal of Cryptology Pub Date : 2024-02-13 DOI:10.1007/s00145-024-09491-9
Akshima, Siyao Guo, Qipeng Liu
{"title":"Time-Space Lower Bounds for Finding Collisions in Merkle–Damgård Hash Functions","authors":"Akshima, Siyao Guo, Qipeng Liu","doi":"10.1007/s00145-024-09491-9","DOIUrl":null,"url":null,"abstract":"<p>We revisit the problem of finding <i>B</i>-block-long collisions in Merkle–Damgård Hash Functions in the auxiliary-input random oracle model, in which an attacker gets a piece of <i>S</i>-bit advice about the random oracle and makes <i>T</i> oracle queries. Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work of Coretti, Dodis, Guo and Steinberger (EUROCRYPT 2018), showed a simple attack for <span>\\(2\\le B\\le T\\)</span> (with respect to a random salt). The attack achieves advantage <span>\\(\\widetilde{\\Omega }(STB/2^n+T^2/2^n)\\)</span> where <i>n</i> is the output length of the random oracle. They conjectured that this attack is optimal. However, this so-called <i>STB</i> conjecture was only proved for <span>\\(B\\approx T\\)</span> and <span>\\(B=2\\)</span>. Very recently, Ghoshal and Komargodski (CRYPTO 2022) confirmed the <i>STB</i> conjecture for all constant values of <i>B</i> and provided an <span>\\(\\widetilde{O}(S^4TB^2/2^n+T^2/2^n)\\)</span> bound for all choices of <i>B</i>. In this work, we prove an <span>\\(\\widetilde{O}((STB/2^n)\\cdot \\max \\{1,ST^2/2^n\\}+ T^2/2^n)\\)</span> bound for every <span>\\(2&lt; B &lt; T\\)</span>. Our bound confirms the <i>STB</i> conjecture for <span>\\(ST^2\\le 2^n\\)</span> and is optimal up to a factor of <i>S</i> for <span>\\(ST^2&gt;2^n\\)</span> (note as <span>\\(T^2\\)</span> is always at most <span>\\(2^n\\)</span>, otherwise finding a collision is trivial by the birthday attack). Our result subsumes all previous upper bounds for all ranges of parameters except for <span>\\(B=\\widetilde{O}(1)\\)</span> and <span>\\(ST^2&gt;2^n\\)</span>. We obtain our results by adopting and refining the technique of Chung, Guo, Liu and Qian (FOCS 2020). Our approach yields more modular proofs and sheds light on how to bypass the limitations of prior techniques. Along the way, we obtain a considerably simpler and illuminating proof for <span>\\(B=2\\)</span>, recovering the main result of Akshima, Cash, Drucker and Wee.</p>","PeriodicalId":54849,"journal":{"name":"Journal of Cryptology","volume":"6 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cryptology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00145-024-09491-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the problem of finding B-block-long collisions in Merkle–Damgård Hash Functions in the auxiliary-input random oracle model, in which an attacker gets a piece of S-bit advice about the random oracle and makes T oracle queries. Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work of Coretti, Dodis, Guo and Steinberger (EUROCRYPT 2018), showed a simple attack for \(2\le B\le T\) (with respect to a random salt). The attack achieves advantage \(\widetilde{\Omega }(STB/2^n+T^2/2^n)\) where n is the output length of the random oracle. They conjectured that this attack is optimal. However, this so-called STB conjecture was only proved for \(B\approx T\) and \(B=2\). Very recently, Ghoshal and Komargodski (CRYPTO 2022) confirmed the STB conjecture for all constant values of B and provided an \(\widetilde{O}(S^4TB^2/2^n+T^2/2^n)\) bound for all choices of B. In this work, we prove an \(\widetilde{O}((STB/2^n)\cdot \max \{1,ST^2/2^n\}+ T^2/2^n)\) bound for every \(2< B < T\). Our bound confirms the STB conjecture for \(ST^2\le 2^n\) and is optimal up to a factor of S for \(ST^2>2^n\) (note as \(T^2\) is always at most \(2^n\), otherwise finding a collision is trivial by the birthday attack). Our result subsumes all previous upper bounds for all ranges of parameters except for \(B=\widetilde{O}(1)\) and \(ST^2>2^n\). We obtain our results by adopting and refining the technique of Chung, Guo, Liu and Qian (FOCS 2020). Our approach yields more modular proofs and sheds light on how to bypass the limitations of prior techniques. Along the way, we obtain a considerably simpler and illuminating proof for \(B=2\), recovering the main result of Akshima, Cash, Drucker and Wee.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在默克尔-达姆加尔德哈希函数中查找碰撞的时空下限
我们在辅助输入随机神谕模型中重温了在 Merkle-Damgård 哈希函数中寻找 B 块长碰撞的问题,在该模型中,攻击者获得了关于随机神谕的 S 位建议,并进行了 T 次神谕查询。Akshima、Cash、Drucker和Wee(CRYPTO 2020)基于Coretti、Dodis、Guo和Steinberger(EUROCRYPT 2018)的工作,展示了一种针对\(2\le B\le T\) (关于随机盐)的简单攻击。该攻击实现了优势((\widetilde{\Omega }(STB/2^n+T^2/2^n)\) where n is the output length of the random oracle.他们猜想这种攻击是最优的。然而,这个所谓的 STB 猜想只在\(B\approx T\) 和\(B=2\)时得到了证明。最近,Ghoshal 和 Komargodski(CRYPTO 2022)证实了所有 B 常值的 STB 猜想,并为所有 B 的选择提供了一个 \(\widetilde{O}(S^4TB^2/2^n+T^2/2^n)\) 约束。在这项工作中,我们为每一个 \(2< B < T\) 证明了一个 \(\widetilde{O}((STB/2^n)\cdot \max \{1,ST^2/2^n\}+ T^2/2^n)\) 约束。我们的边界证实了对\(ST^2\le 2^n\)的STB猜想,并且是对\(ST^2>2^n\)的S因子以内的最优边界(注意\(T^2\)总是最多为\(2^n\),否则通过生日攻击找到碰撞是微不足道的)。除了\(B=widetilde{O}(1)\)和\(ST^2>2^n\)之外,我们的结果包含了之前所有参数范围的上限。我们采用并改进了 Chung、Guo、Liu 和 Qian(FOCS 2020)的技术,从而得到了我们的结果。我们的方法产生了更多的模块化证明,并揭示了如何绕过先前技术的限制。在此过程中,我们得到了关于 \(B=2\) 的更简单、更有启发性的证明,恢复了 Akshima、Cash、Drucker 和 Wee 的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cryptology
Journal of Cryptology 工程技术-工程:电子与电气
CiteScore
7.10
自引率
3.30%
发文量
24
审稿时长
18 months
期刊介绍: The Journal of Cryptology is a forum for original results in all areas of modern information security. Both cryptography and cryptanalysis are covered, including information theoretic and complexity theoretic perspectives as well as implementation, application, and standards issues. Coverage includes such topics as public key and conventional algorithms and their implementations, cryptanalytic attacks, pseudo-random sequences, computational number theory, cryptographic protocols, untraceability, privacy, authentication, key management and quantum cryptography. In addition to full-length technical, survey, and historical articles, the journal publishes short notes.
期刊最新文献
Randomness Recoverable Secret Sharing Schemes Memory-Efficient Attacks on Small LWE Keys Finding Collisions in a Quantum World: Quantum Black-Box Separation of Collision-Resistance and One-Wayness Symmetric and Dual PRFs from Standard Assumptions: A Generic Validation of a Prevailing Assumption The Price of Active Security in Cryptographic Protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1