Assisted design of data science pipelines

Sergey Redyuk, Zoi Kaoudi, Sebastian Schelter, Volker Markl
{"title":"Assisted design of data science pipelines","authors":"Sergey Redyuk, Zoi Kaoudi, Sebastian Schelter, Volker Markl","doi":"10.1007/s00778-024-00835-2","DOIUrl":null,"url":null,"abstract":"<p>When designing data science (DS) pipelines, end-users can get overwhelmed by the large and growing set of available data preprocessing and modeling techniques. Intelligent discovery assistants (IDAs) and automated machine learning (AutoML) solutions aim to facilitate end-users by (semi-)automating the process. However, they are expensive to compute and yield limited applicability for a wide range of real-world use cases and application domains. This is due to (a) their need to execute thousands of pipelines to get the optimal one, (b) their limited support of DS tasks, e.g., supervised classification or regression only, and a small, static set of available data preprocessing and ML algorithms; and (c) their restriction to quantifiable evaluation processes and metrics, e.g., tenfold cross-validation using the ROC AUC score for classification. To overcome these limitations, we propose a human-in-the-loop approach for the <i>assisted</i> <i>design</i> <i>of</i> <i>data</i> <i>science</i> <i>pipelines</i> using previously executed pipelines. Based on a user query, i.e., data and a DS task, our framework outputs a ranked list of pipeline candidates from which the user can choose to execute or modify in real time. To recommend pipelines, it first identifies relevant datasets and pipelines utilizing efficient similarity search. It then ranks the candidate pipelines using multi-objective sorting and takes user interactions into account to improve suggestions over time. In our experimental evaluation, the proposed framework significantly outperforms the state-of-the-art IDA tool and achieves similar predictive performance with state-of-the-art long-running AutoML solutions while being real-time, generic to any evaluation processes and DS tasks, and extensible to new operators.</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-024-00835-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When designing data science (DS) pipelines, end-users can get overwhelmed by the large and growing set of available data preprocessing and modeling techniques. Intelligent discovery assistants (IDAs) and automated machine learning (AutoML) solutions aim to facilitate end-users by (semi-)automating the process. However, they are expensive to compute and yield limited applicability for a wide range of real-world use cases and application domains. This is due to (a) their need to execute thousands of pipelines to get the optimal one, (b) their limited support of DS tasks, e.g., supervised classification or regression only, and a small, static set of available data preprocessing and ML algorithms; and (c) their restriction to quantifiable evaluation processes and metrics, e.g., tenfold cross-validation using the ROC AUC score for classification. To overcome these limitations, we propose a human-in-the-loop approach for the assisted design of data science pipelines using previously executed pipelines. Based on a user query, i.e., data and a DS task, our framework outputs a ranked list of pipeline candidates from which the user can choose to execute or modify in real time. To recommend pipelines, it first identifies relevant datasets and pipelines utilizing efficient similarity search. It then ranks the candidate pipelines using multi-objective sorting and takes user interactions into account to improve suggestions over time. In our experimental evaluation, the proposed framework significantly outperforms the state-of-the-art IDA tool and achieves similar predictive performance with state-of-the-art long-running AutoML solutions while being real-time, generic to any evaluation processes and DS tasks, and extensible to new operators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协助设计数据科学管道
在设计数据科学(DS)管道时,终端用户可能会被大量且不断增加的可用数据预处理和建模技术所淹没。智能发现助手(IDA)和自动机器学习(AutoML)解决方案旨在通过(半)自动化流程为最终用户提供便利。然而,它们的计算成本高昂,而且在广泛的实际用例和应用领域中适用性有限。这是由于:(a) 它们需要执行数以千计的管道才能获得最佳管道;(b) 它们对 DS 任务的支持有限,例如,仅支持监督分类或回归,以及可用数据预处理和 ML 算法的小型静态集;(c) 它们仅限于可量化的评估流程和指标,例如,使用 ROC AUC 分数进行分类的十倍交叉验证。为了克服这些局限性,我们提出了一种 "人在回路中 "的方法,利用以前执行过的管道来辅助设计数据科学管道。根据用户查询(即数据和数据科学任务),我们的框架会输出一份候选管道排序列表,用户可从中选择实时执行或修改。为了推荐管道,它首先利用高效的相似性搜索来识别相关的数据集和管道。然后,它利用多目标排序法对候选管道进行排序,并将用户互动纳入考虑范围,从而随着时间的推移不断改进建议。在我们的实验评估中,所提出的框架明显优于最先进的 IDA 工具,并与最先进的长期运行 AutoML 解决方案实现了类似的预测性能,同时还具有实时性、可通用于任何评估流程和 DS 任务,并可扩展到新的操作员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A versatile framework for attributed network clustering via K-nearest neighbor augmentation Discovering critical vertices for reinforcement of large-scale bipartite networks DumpyOS: A data-adaptive multi-ary index for scalable data series similarity search Enabling space-time efficient range queries with REncoder AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1