{"title":"Rarity updated ensemble with oversampling: An ensemble approach to classification of imbalanced data streams","authors":"Zahra Nouri, Vahid Kiani, Hamid Fadishei","doi":"10.1002/sam.11662","DOIUrl":null,"url":null,"abstract":"Today's ever-increasing generation of streaming data demands novel data mining approaches tailored to mining dynamic data streams. Data streams are non-static in nature, continuously generated, and endless. They often suffer from class imbalance and undergo temporal drift. To address the classification of consecutive data instances within imbalanced data streams, this research introduces a new ensemble classification algorithm called Rarity Updated Ensemble with Oversampling (RUEO). The RUEO approach is specifically designed to exhibit robustness against class imbalance by incorporating an imbalance-specific criterion to assess the efficacy of the base classifiers and employing an oversampling technique to reduce the imbalance in the training data. The RUEO algorithm was evaluated on a set of 20 data streams and compared against 14 baseline algorithms. On average, the proposed RUEO algorithm achieves an average-accuracy of 0.69 on the real-world data streams, while the chunk-based algorithms AWE, AUE, and KUE achieve average-accuracies of 0.48, 0.65, and 0.66, respectively. The statistical analysis, conducted using the Wilcoxon test, reveals a statistically significant improvement in average-accuracy for the proposed RUEO algorithm when compared to 12 out of the 14 baseline algorithms. The source code and experimental results of this research work will be publicly available at https://github.com/vkiani/RUEO.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"247 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11662","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Today's ever-increasing generation of streaming data demands novel data mining approaches tailored to mining dynamic data streams. Data streams are non-static in nature, continuously generated, and endless. They often suffer from class imbalance and undergo temporal drift. To address the classification of consecutive data instances within imbalanced data streams, this research introduces a new ensemble classification algorithm called Rarity Updated Ensemble with Oversampling (RUEO). The RUEO approach is specifically designed to exhibit robustness against class imbalance by incorporating an imbalance-specific criterion to assess the efficacy of the base classifiers and employing an oversampling technique to reduce the imbalance in the training data. The RUEO algorithm was evaluated on a set of 20 data streams and compared against 14 baseline algorithms. On average, the proposed RUEO algorithm achieves an average-accuracy of 0.69 on the real-world data streams, while the chunk-based algorithms AWE, AUE, and KUE achieve average-accuracies of 0.48, 0.65, and 0.66, respectively. The statistical analysis, conducted using the Wilcoxon test, reveals a statistically significant improvement in average-accuracy for the proposed RUEO algorithm when compared to 12 out of the 14 baseline algorithms. The source code and experimental results of this research work will be publicly available at https://github.com/vkiani/RUEO.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.