Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, Didier Loggia
{"title":"Naturally fractured reservoir characterization in heterogeneous sandstones: insight for Uranium In Situ Recovery (Imouraren, Niger)","authors":"Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, Didier Loggia","doi":"10.5194/egusphere-2024-435","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> This study delves into the characterization of a complex reservoir, the Tchirezrine II sandstone unit in North Niger, crucial for potential Uranium In Situ Recovery (ISR) in a naturally fractured and faulted context. Employing a multifaceted approach, including well log data, optical borehole imagery, and hydrogeological tests, alongside satellite-based lineament analysis, this study provides a comprehensive understanding of the structures and its impact on fluid flow. Lineament analysis reveals scale-dependent patterns, consistent with spatially homogeneous joint networks restricted to mechanical units, as well as nearly scale-invariant patterns, better corresponding to spatially heterogeneous fault networks. Various deformation structures are detected from borehole imagery, including Mode I fractures, cataclastic deformation bands, and brecciated-cataclastic fault cores. The Tchirezrine II reservoir displays heterogeneous porosity and permeability related to its fluviatile sedimentary context. These data differ from traditional porosity-permeability relationship obtained in sandstone reservoir matrix but are instead consistent with Nelson’s classification, emphasizing the impact of deformation structures on such petrophysical properties. Hydrological tests have been implemented into a zone of E-W trending deformation structures, revealing a strong permeability anisotropy of this heterogeneity. This strong E-W anisotropy is consistent with the presence of the observed E-W structures, i.e. with a drain behaviour of Mode I open fractures and a sealing behaviour of both cataclastic bands and fault rocks. Considering implications for ISR mining, this study allows discussing the interplay between fractures, faults, and fluid flow properties. It suggests that a well pattern perpendicular to the main permeability orientation can attenuate channelled flow, thus improving contact of the leach solution with the mineralized matrix. These results provide an integrated approach and multi-scale characterization of Naturally<strong> </strong>Fractured Reservoir (NFR) properties in sandstone, offering a basis for optimization of NFR production such as ISR development.","PeriodicalId":21912,"journal":{"name":"Solid Earth","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-435","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. This study delves into the characterization of a complex reservoir, the Tchirezrine II sandstone unit in North Niger, crucial for potential Uranium In Situ Recovery (ISR) in a naturally fractured and faulted context. Employing a multifaceted approach, including well log data, optical borehole imagery, and hydrogeological tests, alongside satellite-based lineament analysis, this study provides a comprehensive understanding of the structures and its impact on fluid flow. Lineament analysis reveals scale-dependent patterns, consistent with spatially homogeneous joint networks restricted to mechanical units, as well as nearly scale-invariant patterns, better corresponding to spatially heterogeneous fault networks. Various deformation structures are detected from borehole imagery, including Mode I fractures, cataclastic deformation bands, and brecciated-cataclastic fault cores. The Tchirezrine II reservoir displays heterogeneous porosity and permeability related to its fluviatile sedimentary context. These data differ from traditional porosity-permeability relationship obtained in sandstone reservoir matrix but are instead consistent with Nelson’s classification, emphasizing the impact of deformation structures on such petrophysical properties. Hydrological tests have been implemented into a zone of E-W trending deformation structures, revealing a strong permeability anisotropy of this heterogeneity. This strong E-W anisotropy is consistent with the presence of the observed E-W structures, i.e. with a drain behaviour of Mode I open fractures and a sealing behaviour of both cataclastic bands and fault rocks. Considering implications for ISR mining, this study allows discussing the interplay between fractures, faults, and fluid flow properties. It suggests that a well pattern perpendicular to the main permeability orientation can attenuate channelled flow, thus improving contact of the leach solution with the mineralized matrix. These results provide an integrated approach and multi-scale characterization of NaturallyFractured Reservoir (NFR) properties in sandstone, offering a basis for optimization of NFR production such as ISR development.
期刊介绍:
Solid Earth (SE) is a not-for-profit journal that publishes multidisciplinary research on the composition, structure, dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. The journal invites contributions encompassing observational, experimental, and theoretical investigations in the form of short communications, research articles, method articles, review articles, and discussion and commentaries on all aspects of the solid Earth (for details see manuscript types). Being interdisciplinary in scope, SE covers the following disciplines:
geochemistry, mineralogy, petrology, volcanology;
geodesy and gravity;
geodynamics: numerical and analogue modeling of geoprocesses;
geoelectrics and electromagnetics;
geomagnetism;
geomorphology, morphotectonics, and paleoseismology;
rock physics;
seismics and seismology;
critical zone science (Earth''s permeable near-surface layer);
stratigraphy, sedimentology, and palaeontology;
rock deformation, structural geology, and tectonics.