Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate

IF 3.2 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Solid Earth Pub Date : 2024-02-08 DOI:10.5194/se-15-167-2024
Kazuto Mikuni, Naoto Hirano, Shiki Machida, Hirochika Sumino, Norikatsu Akizawa, Akihiro Tamura, Tomoaki Morishita, Yasuhiro Kato
{"title":"Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate","authors":"Kazuto Mikuni, Naoto Hirano, Shiki Machida, Hirochika Sumino, Norikatsu Akizawa, Akihiro Tamura, Tomoaki Morishita, Yasuhiro Kato","doi":"10.5194/se-15-167-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Petit-spot volcanoes, occurring due to plate flexure, have been reported globally. As the petit-spot melts ascend from the asthenosphere, they provide crucial information of the lithosphere–asthenosphere boundary. Herein, we examined the lava outcrops of six monogenetic volcanoes formed by petit-spot volcanism in the western Pacific. We then analyzed the 40Ar/39Ar ages, major and trace element compositions, and Sr, Nd, and Pb isotopic ratios of the petit-spot basalts. The 40Ar/39Ar ages of two monogenetic volcanoes were ca. 2.6 Ma (million years ago) and ca. 0 Ma. The isotopic compositions of the western Pacific petit-spot basalts suggest geochemically similar melting sources. They were likely derived from a mixture of high-μ (HIMU) mantle-like and enriched mantle (EM)-1-like components related to carbonatitic/carbonated materials and recycled crustal components. The characteristic trace element composition (i.e., Zr, Hf, and Ti depletions) of the western Pacific petit-spot magmas could be explained by the partial melting of ∼ 5 % crust bearing garnet lherzolite, with 10 % carbonatite flux to a given mass of the source, as implied by a mass-balance-based melting model. This result confirms the involvement of carbonatite melt and recycled crust in the source of petit-spot melts. It provides insights into the genesis of tectonic-induced volcanoes, including the Hawaiian North Arch and Samoan petit-spot-like rejuvenated volcanoes that have a similar trace element composition to petit-spot basalts.","PeriodicalId":21912,"journal":{"name":"Solid Earth","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/se-15-167-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Petit-spot volcanoes, occurring due to plate flexure, have been reported globally. As the petit-spot melts ascend from the asthenosphere, they provide crucial information of the lithosphere–asthenosphere boundary. Herein, we examined the lava outcrops of six monogenetic volcanoes formed by petit-spot volcanism in the western Pacific. We then analyzed the 40Ar/39Ar ages, major and trace element compositions, and Sr, Nd, and Pb isotopic ratios of the petit-spot basalts. The 40Ar/39Ar ages of two monogenetic volcanoes were ca. 2.6 Ma (million years ago) and ca. 0 Ma. The isotopic compositions of the western Pacific petit-spot basalts suggest geochemically similar melting sources. They were likely derived from a mixture of high-μ (HIMU) mantle-like and enriched mantle (EM)-1-like components related to carbonatitic/carbonated materials and recycled crustal components. The characteristic trace element composition (i.e., Zr, Hf, and Ti depletions) of the western Pacific petit-spot magmas could be explained by the partial melting of ∼ 5 % crust bearing garnet lherzolite, with 10 % carbonatite flux to a given mass of the source, as implied by a mass-balance-based melting model. This result confirms the involvement of carbonatite melt and recycled crust in the source of petit-spot melts. It provides insights into the genesis of tectonic-induced volcanoes, including the Hawaiian North Arch and Samoan petit-spot-like rejuvenated volcanoes that have a similar trace element composition to petit-spot basalts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳酸盐岩和再循环洋壳对西太平洋板块小点熔岩的贡献
摘要由于板块挠曲而出现的小点火山在全球都有报道。由于小点熔融体从岩石圈上升,它们提供了岩石圈-岩石圈边界的重要信息。在此,我们研究了西太平洋由小火山喷发形成的六座单源火山的熔岩露头。然后,我们分析了小火山口玄武岩的 40Ar/39Ar 年龄、主要元素和微量元素组成以及锶、钕和铅同位素比值。两座单源火山的 40Ar/39Ar 年龄约为 2.6 Ma(百万年前)。2.6Ma(百万年前)和约 0Ma。西太平洋小斑玄武岩的同位素组成表明,它们的熔融源具有相似的地球化学性质。它们很可能来自与碳酸盐岩/碳化物质和再生地壳成分有关的高μ(HIMU)类地幔和富集地幔(EM)-1 类成分的混合物。西太平洋小点岩浆的微量元素组成特征(即Zr、Hf和Ti贫化)可以通过部分熔融5%的地壳石榴石蛭石来解释,基于质量平衡的熔融模型暗示了一定质量的岩浆源有10%的碳酸盐岩通量。这一结果证实了碳酸盐岩熔体和回收地壳参与了小斑熔体的来源。它为构造诱发火山的成因提供了启示,包括夏威夷北拱门和萨摩亚的小点状年轻化火山,它们的微量元素组成与小点玄武岩相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid Earth
Solid Earth GEOCHEMISTRY & GEOPHYSICS-
CiteScore
6.90
自引率
8.80%
发文量
78
审稿时长
4.5 months
期刊介绍: Solid Earth (SE) is a not-for-profit journal that publishes multidisciplinary research on the composition, structure, dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. The journal invites contributions encompassing observational, experimental, and theoretical investigations in the form of short communications, research articles, method articles, review articles, and discussion and commentaries on all aspects of the solid Earth (for details see manuscript types). Being interdisciplinary in scope, SE covers the following disciplines: geochemistry, mineralogy, petrology, volcanology; geodesy and gravity; geodynamics: numerical and analogue modeling of geoprocesses; geoelectrics and electromagnetics; geomagnetism; geomorphology, morphotectonics, and paleoseismology; rock physics; seismics and seismology; critical zone science (Earth''s permeable near-surface layer); stratigraphy, sedimentology, and palaeontology; rock deformation, structural geology, and tectonics.
期刊最新文献
Lithologically constrained velocity–density relationships and vertical stress gradients in the North Alpine Foreland Basin, SE Germany Anatomy of a fumarole field: drone remote-sensing and petrological approaches reveal the degassing and alteration structure at La Fossa cone, Vulcano, Italy Passive seismic imaging of ore deposits using coda wave interferometry: a case study of Akanvaara V-Cr-PGE deposit in Northern Finland Driven magmatism and crustal thinning of coastal southern China in response to subduction Magnesium isotope fractionation processes during seafloor serpentinization and implications for serpentinite subduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1