{"title":"Connecting Anti-integrability to Attractors for Three-Dimensional Quadratic Diffeomorphisms","authors":"Amanda E. Hampton, James D. Meiss","doi":"10.1137/23m1571897","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 616-640, March 2024. <br/> Abstract. We previously showed that three-dimensional quadratic diffeomorphisms have anti-integrable (AI) limits that correspond to a quadratic correspondence, a pair of one-dimensional maps. At the AI limit the dynamics is conjugate to a full shift on two symbols. Here we consider a more general AI limit, allowing two parameters of the map to go to infinity. We prove the existence of AI states for each symbol sequence for three cases of the quadratic correspondence: parabolas, ellipses, and hyperbolas. A contraction argument gives parameter domains such that this is a bijection, but the correspondence also is observed to apply more generally. We show that orbits of the original map can be obtained by numerical continuation for a volume-contracting case. These results show that periodic AI states evolve into the observed periodic attractors of the diffeomorphism. We also continue a periodic AI state with a symbol sequence chosen so that it continues to an orbit resembling a chaotic attractor that is a 3D version of the classical 2D Hénon attractor.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"3 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1571897","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 616-640, March 2024. Abstract. We previously showed that three-dimensional quadratic diffeomorphisms have anti-integrable (AI) limits that correspond to a quadratic correspondence, a pair of one-dimensional maps. At the AI limit the dynamics is conjugate to a full shift on two symbols. Here we consider a more general AI limit, allowing two parameters of the map to go to infinity. We prove the existence of AI states for each symbol sequence for three cases of the quadratic correspondence: parabolas, ellipses, and hyperbolas. A contraction argument gives parameter domains such that this is a bijection, but the correspondence also is observed to apply more generally. We show that orbits of the original map can be obtained by numerical continuation for a volume-contracting case. These results show that periodic AI states evolve into the observed periodic attractors of the diffeomorphism. We also continue a periodic AI state with a symbol sequence chosen so that it continues to an orbit resembling a chaotic attractor that is a 3D version of the classical 2D Hénon attractor.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.