求助PDF
{"title":"Styrene–butadiene–styrene/graphene nanocomposites with improved thermal oxidation stability","authors":"Hui Li, Hao Wu, Chao Wang, Jing Zheng","doi":"10.1002/pi.6611","DOIUrl":null,"url":null,"abstract":"<p>Thermoplastic elastomers are rubber-like in their elasticity, plastic-like in their ease of processing and recyclable. Styrene–butadiene–styrene (SBS) block copolymer is the world's most consumed thermoplastic elastomer. However, because of the carbon–carbon double bonds in its molecular structure, SBS exhibits poor thermal oxidation stability, which significantly limits the service lifetime and reliability of SBS. Here, we dramatically improve the thermal oxidation stability of SBS by incorporating graphene (GE) into the layered structure of SBS, which is attributed to GE's capacity to function as a gas barrier and scavenge free radicals. Compared with pure SBS, the oxidation induction time of SBS/GE nanocomposites can be increased by up to 225 times. This thermoplastic elastomer has potential in applications related to medical supplies, sports equipment, home appliances and automated office equipment. © 2024 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 6","pages":"446-453"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6611","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Thermoplastic elastomers are rubber-like in their elasticity, plastic-like in their ease of processing and recyclable. Styrene–butadiene–styrene (SBS) block copolymer is the world's most consumed thermoplastic elastomer. However, because of the carbon–carbon double bonds in its molecular structure, SBS exhibits poor thermal oxidation stability, which significantly limits the service lifetime and reliability of SBS. Here, we dramatically improve the thermal oxidation stability of SBS by incorporating graphene (GE) into the layered structure of SBS, which is attributed to GE's capacity to function as a gas barrier and scavenge free radicals. Compared with pure SBS, the oxidation induction time of SBS/GE nanocomposites can be increased by up to 225 times. This thermoplastic elastomer has potential in applications related to medical supplies, sports equipment, home appliances and automated office equipment. © 2024 Society of Industrial Chemistry.
具有更好热氧化稳定性的苯乙烯-丁二烯-苯乙烯/石墨烯纳米复合材料
热塑性弹性体具有类似橡胶的弹性、类似塑料的易加工性和可回收性。苯乙烯-丁二烯-苯乙烯(SBS)嵌段共聚物是世界上消耗量最大的热塑性弹性体。然而,由于其分子结构中存在碳碳双键,SBS 的热氧化稳定性较差,这大大限制了 SBS 的使用寿命和可靠性。在这里,我们通过在 SBS 的层状结构中加入石墨烯(GE),显著提高了 SBS 的热氧化稳定性,这归功于石墨烯具有气体屏障和清除自由基的功能。与纯 SBS 相比,SBS/GE 纳米复合材料的氧化诱导时间最多可延长 225 倍。这种热塑性弹性体有望应用于医疗用品、运动器材、家用电器和自动化办公设备等领域。© 2024 工业化学学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。