References tracking and perturbations reconstruction in a Cartesian robot

José de Jesús Rubio, Daniel Andres Cordova, Mario Alberto Hernandez, Eduardo Orozco, Francisco Javier Rosas, Guadalupe Juliana Gutierrez, Jesus Alberto Meda-Campaña, Carlos Aguilar-Ibañez
{"title":"References tracking and perturbations reconstruction in a Cartesian robot","authors":"José de Jesús Rubio, Daniel Andres Cordova, Mario Alberto Hernandez, Eduardo Orozco, Francisco Javier Rosas, Guadalupe Juliana Gutierrez, Jesus Alberto Meda-Campaña, Carlos Aguilar-Ibañez","doi":"10.1007/s41315-023-00315-w","DOIUrl":null,"url":null,"abstract":"<p>An exosystem needs to be nonlinear when it generates the perturbations to be reconstructed; however, an exosystem does not need to be nonlinear when it generates the references to be tracked. Resulting that the tracking of the references generated by an exosystem is an easier task. Hence, some studies on the references tracking should be made. Furthermore, to solve the references tracking, the perturbations are needed. In this research, the references tracking and the perturbations reconstruction in a Cartesian robot are discussed. For the perturbations reconstruction, an estimator is defined to force the reconstructed perturbations to track the perturbations of a Cartesian robot model. For the references tracking, a controller is defined to force a Cartesian robot model to track an exosystem. A theorem is addressed to prove the perturbations reconstruction. A theorem is addressed to prove the references tracking. A simulation in a Cartesian robot is used to confirm the validity and effectiveness of our controller with estimator in comparison with a feedback controller.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-023-00315-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An exosystem needs to be nonlinear when it generates the perturbations to be reconstructed; however, an exosystem does not need to be nonlinear when it generates the references to be tracked. Resulting that the tracking of the references generated by an exosystem is an easier task. Hence, some studies on the references tracking should be made. Furthermore, to solve the references tracking, the perturbations are needed. In this research, the references tracking and the perturbations reconstruction in a Cartesian robot are discussed. For the perturbations reconstruction, an estimator is defined to force the reconstructed perturbations to track the perturbations of a Cartesian robot model. For the references tracking, a controller is defined to force a Cartesian robot model to track an exosystem. A theorem is addressed to prove the perturbations reconstruction. A theorem is addressed to prove the references tracking. A simulation in a Cartesian robot is used to confirm the validity and effectiveness of our controller with estimator in comparison with a feedback controller.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直角坐标机器人的参照物跟踪和扰动重建
外系统在产生要重建的扰动时需要非线性;然而,外系统在产生要跟踪的参照物时不需要非线性。因此,跟踪由外差系统产生的参考点是一项比较容易的任务。因此,应该对参照物跟踪进行一些研究。此外,要解决参照物跟踪问题,还需要扰动。本研究讨论了笛卡尔机器人的参照物跟踪和扰动重建。对于扰动重构,定义了一个估计器来强制重构的扰动跟踪笛卡尔机器人模型的扰动。在参照物跟踪方面,定义了一个控制器来强制笛卡尔机器人模型跟踪外系统。用定理证明扰动重构。定理证明参照物跟踪。通过对直角坐标机器人的模拟,证实了与反馈控制器相比,带估计器的控制器的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
5.90%
发文量
50
期刊介绍: The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications
期刊最新文献
A review of the application of fuzzy mathematical algorithm-based approach in autonomous vehicles and drones Robotic tree climbers and strategies - a survey Efficient multi-robot path planning in real environments: a centralized coordination system Cross-pollination of knowledge for object detection in domain adaptation for industrial automation Push or pull: grasping performance analysis between a pulling gripper inspired by Tetraonchus monenteron parasite versus an actively pushing gripper developed through many-objective design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1