Multivariate Hermite polynomials and information matrix tests

IF 2 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2024-02-06 DOI:10.1016/j.ecosta.2024.01.005
Dante Amengual, Gabriele Fiorentini, Enrique Sentana
{"title":"Multivariate Hermite polynomials and information matrix tests","authors":"Dante Amengual, Gabriele Fiorentini, Enrique Sentana","doi":"10.1016/j.ecosta.2024.01.005","DOIUrl":null,"url":null,"abstract":"<p>The information matrix test for a normal random vector is shown to coincide with the sum of the moment tests for all third- and fourth-order multivariate Hermite polynomials. The statistic is decomposed as the sum of the marginal information matrix test for a subvector, the conditional information matrix test for the complementary subvector, and a third leftover component. It is also shown that exact finite sample distributions can be obtained by drawing spherical Gaussian vectors and orthogonalising them using sample moments. These tests are applied to assess the implications of Gibrat’s law for US city sizes using the three most recent censuses.</p>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"164 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2024.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The information matrix test for a normal random vector is shown to coincide with the sum of the moment tests for all third- and fourth-order multivariate Hermite polynomials. The statistic is decomposed as the sum of the marginal information matrix test for a subvector, the conditional information matrix test for the complementary subvector, and a third leftover component. It is also shown that exact finite sample distributions can be obtained by drawing spherical Gaussian vectors and orthogonalising them using sample moments. These tests are applied to assess the implications of Gibrat’s law for US city sizes using the three most recent censuses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元赫米特多项式和信息矩阵检验
正态随机向量的信息矩阵检验与所有三阶和四阶多变量赫米特多项式的矩检验之和相吻合。统计量被分解为一个子向量的边际信息矩阵检验、互补子向量的条件信息矩阵检验和第三个剩余部分之和。研究还表明,通过绘制球形高斯向量并使用样本矩对其进行正交,可以获得精确的有限样本分布。这些检验应用于利用最近三次人口普查评估吉布拉特定律对美国城市规模的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation Forecasting with Machine Learning methods and multiple large datasets[formula omitted] Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms A Bayesian flexible model for testing Granger causality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1