Ngo Nguyen Tra My, Tran Thi Bich Quyen, Tran Minh Khang, Bui Le Anh Tuan, Doan Van Hong Thien
{"title":"Synthesis of Au/Cu2O/graphene quantum dots nanocomposites and its application for glucose oxidation","authors":"Ngo Nguyen Tra My, Tran Thi Bich Quyen, Tran Minh Khang, Bui Le Anh Tuan, Doan Van Hong Thien","doi":"10.1007/s12039-023-02239-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the novel Au/Cu<sub>2</sub>O/Graphene quantum dots nanocomposites have been synthesized <i>via</i> a fast, simple and environmentally friendly method for the first time. Specifically, Cu<sub>2</sub>O nanocubes (Cu<sub>2</sub>O NCBs) synthesized by a reduction reaction at room temperature were combined with Au nanoparticles (Au NPs) and Graphene quantum dots (GQDs) obtained from low-cost and naturally abundant material. The synthesized Au/Cu<sub>2</sub>O/GQDs were characterized by UV-vis, FTIR, XRD, TEM, FESEM, and EDS. The results show that the Au/Cu<sub>2</sub>O/GQDs have an average size of about 32-36 nm, in which the diameter of Au NPs is ~28-32 nm, Cu<sub>2</sub>O particles have the form of nanocube with the size of ~29-33 nm and GQDs are small spherical with an average size of ~5 nm. In addition, the electrochemical properties of the Au/Cu<sub>2</sub>O/GQDs electrodes were investigated using the cyclic voltammetry (CV) technique. The obtained results show that the Au/Cu<sub>2</sub>O/GQDs have high electroactivity, which are very potential and promising to be used in glucose sensor with a very wide concentration of glucose detection range from 10<sup>-10</sup> M to 1 M with a the LOD of 70 nM (7×10<sup>-8</sup> M) and a high sensitivity of 32.5 μAμM<sup>-1</sup>cm<sup>-2</sup>. Therefore, Au/Cu<sub>2</sub>O/GQDs will be potential candidate for non-enzymatic sensitive glucose sensors in the future.</p><h3>Graphical abstract</h3><p>Cu<sub>2</sub>O nanocubes (Cu<sub>2</sub>O NCBs) were successfully combined with Au nanoparticles (Au NPs) and Graphene quantum dots (GQDs) to generate Au/Cu<sub>2</sub>O/GQDs nanocomposites. The properties and morphology of synthesized Au/Cu<sub>2</sub>O/GQDs were also studied. Au/Cu<sub>2</sub>O/GQDs showed promising electrochemical activity and performed its applicability for glucose detection with a wide concentration of glucose detection range from 10<sup>-10</sup> M to 1 M.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-023-02239-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the novel Au/Cu2O/Graphene quantum dots nanocomposites have been synthesized via a fast, simple and environmentally friendly method for the first time. Specifically, Cu2O nanocubes (Cu2O NCBs) synthesized by a reduction reaction at room temperature were combined with Au nanoparticles (Au NPs) and Graphene quantum dots (GQDs) obtained from low-cost and naturally abundant material. The synthesized Au/Cu2O/GQDs were characterized by UV-vis, FTIR, XRD, TEM, FESEM, and EDS. The results show that the Au/Cu2O/GQDs have an average size of about 32-36 nm, in which the diameter of Au NPs is ~28-32 nm, Cu2O particles have the form of nanocube with the size of ~29-33 nm and GQDs are small spherical with an average size of ~5 nm. In addition, the electrochemical properties of the Au/Cu2O/GQDs electrodes were investigated using the cyclic voltammetry (CV) technique. The obtained results show that the Au/Cu2O/GQDs have high electroactivity, which are very potential and promising to be used in glucose sensor with a very wide concentration of glucose detection range from 10-10 M to 1 M with a the LOD of 70 nM (7×10-8 M) and a high sensitivity of 32.5 μAμM-1cm-2. Therefore, Au/Cu2O/GQDs will be potential candidate for non-enzymatic sensitive glucose sensors in the future.
Graphical abstract
Cu2O nanocubes (Cu2O NCBs) were successfully combined with Au nanoparticles (Au NPs) and Graphene quantum dots (GQDs) to generate Au/Cu2O/GQDs nanocomposites. The properties and morphology of synthesized Au/Cu2O/GQDs were also studied. Au/Cu2O/GQDs showed promising electrochemical activity and performed its applicability for glucose detection with a wide concentration of glucose detection range from 10-10 M to 1 M.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.