Blind extraction of guitar effects through blind system inversion and neural guitar effect modeling

IF 1.7 3区 计算机科学 Q2 ACOUSTICS Eurasip Journal on Audio Speech and Music Processing Pub Date : 2024-02-07 DOI:10.1186/s13636-024-00330-0
Reemt Hinrichs, Kevin Gerkens, Alexander Lange, Jörn Ostermann
{"title":"Blind extraction of guitar effects through blind system inversion and neural guitar effect modeling","authors":"Reemt Hinrichs, Kevin Gerkens, Alexander Lange, Jörn Ostermann","doi":"10.1186/s13636-024-00330-0","DOIUrl":null,"url":null,"abstract":"Audio effects are an ubiquitous tool in music production due to the interesting ways in which they can shape the sound of music. Guitar effects, the subset of all audio effects focusing on guitar signals, are commonly used in popular music to shape the guitar sound to fit specific genres or to create more variety within musical compositions. Automatic extraction of guitar effects and their parameter settings, with the aim to copy a target guitar sound, has been previously investigated, where artificial neural networks first determine the effect class of a reference signal and subsequently the parameter settings. These approaches require a corresponding guitar effect implementation to be available. In general, for very close sound matching, additional research regarding effect implementations is necessary. In this work, we present a different approach to circumvent these issues. We propose blind extraction of guitar effects through a combination of blind system inversion and neural guitar effect modeling. That way, an immediately usable, blind copy of the target guitar effect is obtained. The proposed method is tested with the phaser, softclipping and slapback delay effect. Listening tests with eight subjects indicate excellent quality of the blind copies, i.e., little to no difference to the reference guitar effect.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"136 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Audio Speech and Music Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13636-024-00330-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Audio effects are an ubiquitous tool in music production due to the interesting ways in which they can shape the sound of music. Guitar effects, the subset of all audio effects focusing on guitar signals, are commonly used in popular music to shape the guitar sound to fit specific genres or to create more variety within musical compositions. Automatic extraction of guitar effects and their parameter settings, with the aim to copy a target guitar sound, has been previously investigated, where artificial neural networks first determine the effect class of a reference signal and subsequently the parameter settings. These approaches require a corresponding guitar effect implementation to be available. In general, for very close sound matching, additional research regarding effect implementations is necessary. In this work, we present a different approach to circumvent these issues. We propose blind extraction of guitar effects through a combination of blind system inversion and neural guitar effect modeling. That way, an immediately usable, blind copy of the target guitar effect is obtained. The proposed method is tested with the phaser, softclipping and slapback delay effect. Listening tests with eight subjects indicate excellent quality of the blind copies, i.e., little to no difference to the reference guitar effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过盲系统反转和神经吉他效果建模盲提取吉他效果
音频特效是音乐制作中无处不在的工具,因为它们能以有趣的方式塑造音乐的音效。吉他特效是以吉他信号为核心的所有音频特效的子集,常用于流行音乐中,以塑造吉他音效,使其适合特定流派或在音乐作品中创造更多变化。为了复制目标吉他音效,以前曾研究过自动提取吉他音效及其参数设置的方法,其中人工神经网络首先确定参考信号的音效类别,然后确定参数设置。这些方法都需要有相应的吉他效果实现。一般来说,要实现非常接近的声音匹配,还需要对效果实现进行额外的研究。在这项工作中,我们提出了一种不同的方法来规避这些问题。我们建议通过盲系统反转和神经吉他效果建模相结合的方法,对吉他效果进行盲提取。这样,就能立即获得可用的目标吉他效果盲拷贝。我们用相位器、软剪辑和回拍延迟效果对所提出的方法进行了测试。由八名受试者进行的听力测试表明,盲拷贝的质量极佳,即与参考吉他效果几乎没有差别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eurasip Journal on Audio Speech and Music Processing
Eurasip Journal on Audio Speech and Music Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.10
自引率
4.20%
发文量
0
审稿时长
12 months
期刊介绍: The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.
期刊最新文献
Compression of room impulse responses for compact storage and fast low-latency convolution Guest editorial: AI for computational audition—sound and music processing Physics-constrained adaptive kernel interpolation for region-to-region acoustic transfer function: a Bayesian approach Physics-informed neural network for volumetric sound field reconstruction of speech signals Optimal sensor placement for the spatial reconstruction of sound fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1