Kati Miettunen, Mahboubeh Hadadian, Joaquín Valdez García, Alicja Lawrynowicz, Elena Akulenko, Orlando J. Rojas, Michael Hummel, Jaana Vapaavuori
{"title":"Bio-based materials for solar cells","authors":"Kati Miettunen, Mahboubeh Hadadian, Joaquín Valdez García, Alicja Lawrynowicz, Elena Akulenko, Orlando J. Rojas, Michael Hummel, Jaana Vapaavuori","doi":"10.1002/wene.508","DOIUrl":null,"url":null,"abstract":"Plant-based materials are emerging as an alternative to conventional components in advanced energy applications. Among these, energy harvesting from sunlight is highly attractive and, in fact, represents the fastest growing energy technology. This review addresses the broad field of solar cell science since plant-based components can be utilized in almost all solar technologies, and in certain photovoltaic technologies, they can fulfill most of the roles in photovoltaic devices. There is strengthened recent interest in developing sustainable materials options as well as new functionalities being developed for bio-based materials. This contribution describes the different options for plant-derived materials in photovoltaics and discusses their deployment feasibility. We focus on performance, lifetime, and embedded energy, all of which are critical to achieve—economically and sustainably–competitive photovoltaic devices. We address the tendency in the current literature for greenwashing, given that not all plant-based solutions are environmentally-sound at the device level. On the other hand, plant-based materials can offer functionalities that cannot be reached with currently used materials.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":"74 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.508","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-based materials are emerging as an alternative to conventional components in advanced energy applications. Among these, energy harvesting from sunlight is highly attractive and, in fact, represents the fastest growing energy technology. This review addresses the broad field of solar cell science since plant-based components can be utilized in almost all solar technologies, and in certain photovoltaic technologies, they can fulfill most of the roles in photovoltaic devices. There is strengthened recent interest in developing sustainable materials options as well as new functionalities being developed for bio-based materials. This contribution describes the different options for plant-derived materials in photovoltaics and discusses their deployment feasibility. We focus on performance, lifetime, and embedded energy, all of which are critical to achieve—economically and sustainably–competitive photovoltaic devices. We address the tendency in the current literature for greenwashing, given that not all plant-based solutions are environmentally-sound at the device level. On the other hand, plant-based materials can offer functionalities that cannot be reached with currently used materials.
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.