{"title":"Chain-of-event prompting for multi-document summarization by large language models","authors":"Songlin Bao, Tiantian Li, Bin Cao","doi":"10.1108/ijwis-12-2023-0249","DOIUrl":null,"url":null,"abstract":"\nPurpose\nIn the era of big data, various industries are generating large amounts of text data every day. Simplifying and summarizing these data can effectively serve users and improve efficiency. Recently, zero-shot prompting in large language models (LLMs) has demonstrated remarkable performance on various language tasks. However, generating a very “concise” multi-document summary is a difficult task for it. When conciseness is specified in the zero-shot prompting, the generated multi-document summary still contains some unimportant information, even with the few-shot prompting. This paper aims to propose a LLMs prompting for multi-document summarization task.\n\n\nDesign/methodology/approach\nTo overcome this challenge, the authors propose chain-of-event (CoE) prompting for multi-document summarization (MDS) task. In this prompting, the authors take events as the center and propose a four-step summary reasoning process: specific event extraction; event abstraction and generalization; common event statistics; and summary generation. To further improve the performance of LLMs, the authors extend CoE prompting with the example of summary reasoning.\n\n\nFindings\nSummaries generated by CoE prompting are more abstractive, concise and accurate. The authors evaluate the authors’ proposed prompting on two data sets. The experimental results over ChatGLM2-6b show that the authors’ proposed CoE prompting consistently outperforms other typical promptings across all data sets.\n\n\nOriginality/value\nThis paper proposes CoE prompting to solve MDS tasks by the LLMs. CoE prompting can not only identify the key events but also ensure the conciseness of the summary. By this method, users can access the most relevant and important information quickly, improving their decision-making processes.\n","PeriodicalId":44153,"journal":{"name":"International Journal of Web Information Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijwis-12-2023-0249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
In the era of big data, various industries are generating large amounts of text data every day. Simplifying and summarizing these data can effectively serve users and improve efficiency. Recently, zero-shot prompting in large language models (LLMs) has demonstrated remarkable performance on various language tasks. However, generating a very “concise” multi-document summary is a difficult task for it. When conciseness is specified in the zero-shot prompting, the generated multi-document summary still contains some unimportant information, even with the few-shot prompting. This paper aims to propose a LLMs prompting for multi-document summarization task.
Design/methodology/approach
To overcome this challenge, the authors propose chain-of-event (CoE) prompting for multi-document summarization (MDS) task. In this prompting, the authors take events as the center and propose a four-step summary reasoning process: specific event extraction; event abstraction and generalization; common event statistics; and summary generation. To further improve the performance of LLMs, the authors extend CoE prompting with the example of summary reasoning.
Findings
Summaries generated by CoE prompting are more abstractive, concise and accurate. The authors evaluate the authors’ proposed prompting on two data sets. The experimental results over ChatGLM2-6b show that the authors’ proposed CoE prompting consistently outperforms other typical promptings across all data sets.
Originality/value
This paper proposes CoE prompting to solve MDS tasks by the LLMs. CoE prompting can not only identify the key events but also ensure the conciseness of the summary. By this method, users can access the most relevant and important information quickly, improving their decision-making processes.
期刊介绍:
The Global Information Infrastructure is a daily reality. In spite of the many applications in all domains of our societies: e-business, e-commerce, e-learning, e-science, and e-government, for instance, and in spite of the tremendous advances by engineers and scientists, the seamless development of Web information systems and services remains a major challenge. The journal examines how current shared vision for the future is one of semantically-rich information and service oriented architecture for global information systems. This vision is at the convergence of progress in technologies such as XML, Web services, RDF, OWL, of multimedia, multimodal, and multilingual information retrieval, and of distributed, mobile and ubiquitous computing. Topicality While the International Journal of Web Information Systems covers a broad range of topics, the journal welcomes papers that provide a perspective on all aspects of Web information systems: Web semantics and Web dynamics, Web mining and searching, Web databases and Web data integration, Web-based commerce and e-business, Web collaboration and distributed computing, Internet computing and networks, performance of Web applications, and Web multimedia services and Web-based education.