{"title":"Graph-based multi-information integration network with external news environment perception for Propaganda detection","authors":"Xinyu Liu, Kun Ma, Ke Ji, Zhenxiang Chen, Bo Yang","doi":"10.1108/ijwis-12-2023-0242","DOIUrl":null,"url":null,"abstract":"\nPurpose\nPropaganda is a prevalent technique used in social media to intentionally express opinions or actions with the aim of manipulating or deceiving users. Existing methods for propaganda detection primarily focus on capturing language features within its content. However, these methods tend to overlook the information presented within the external news environment from which propaganda news originated and spread. This news environment reflects recent mainstream media opinions and public attention and contains language characteristics of non-propaganda news. Therefore, the authors have proposed a graph-based multi-information integration network with an external news environment (abbreviated as G-MINE) for propaganda detection.\n\n\nDesign/methodology/approach\nG-MINE is proposed to comprise four parts: textual information extraction module, external news environment perception module, multi-information integration module and classifier. Specifically, the external news environment perception module and multi-information integration module extract and integrate the popularity and novelty into the textual information and capture the high-order complementary information between them.\n\n\nFindings\nG-MINE achieves state-of-the-art performance on both the TSHP-17, Qprop and the PTC data sets, with an accuracy of 98.24%, 90.59% and 97.44%, respectively.\n\n\nOriginality/value\nAn external news environment perception module is proposed to capture the popularity and novelty information, and a multi-information integration module is proposed to effectively fuse them with the textual information.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"42 14","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijwis-12-2023-0242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Propaganda is a prevalent technique used in social media to intentionally express opinions or actions with the aim of manipulating or deceiving users. Existing methods for propaganda detection primarily focus on capturing language features within its content. However, these methods tend to overlook the information presented within the external news environment from which propaganda news originated and spread. This news environment reflects recent mainstream media opinions and public attention and contains language characteristics of non-propaganda news. Therefore, the authors have proposed a graph-based multi-information integration network with an external news environment (abbreviated as G-MINE) for propaganda detection.
Design/methodology/approach
G-MINE is proposed to comprise four parts: textual information extraction module, external news environment perception module, multi-information integration module and classifier. Specifically, the external news environment perception module and multi-information integration module extract and integrate the popularity and novelty into the textual information and capture the high-order complementary information between them.
Findings
G-MINE achieves state-of-the-art performance on both the TSHP-17, Qprop and the PTC data sets, with an accuracy of 98.24%, 90.59% and 97.44%, respectively.
Originality/value
An external news environment perception module is proposed to capture the popularity and novelty information, and a multi-information integration module is proposed to effectively fuse them with the textual information.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.