New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Chemosensors Pub Date : 2024-02-12 DOI:10.3390/chemosensors12020027
Anifatul Faricha, Parthojit Chakraborty, T. Chang, Masato Sone, Takamichi Nakamoto
{"title":"New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites","authors":"Anifatul Faricha, Parthojit Chakraborty, T. Chang, Masato Sone, Takamichi Nakamoto","doi":"10.3390/chemosensors12020027","DOIUrl":null,"url":null,"abstract":"The Amperometric Gas Sensor (AGS) uses an electrode as the transducer element which converts its signal into a current from the electrochemical reaction of analytes taking place at the electrode surface. Many attempts to improve AGS performance, such as modifying the working electrode, applying a particular gas-permeable membrane, and selecting the proper electrolyte, etc., have been reported in the scientific literature. On the other hand, in the materials community, atomic gold has gained much attention because its physicochemical properties dramatically differ from those of gold nanoparticles. This paper provides an overview of the use of atomic gold in AGSs, both in a bulky AGS and a miniaturized AGS. In the miniaturized AGS, the system must be redesigned; for example, the aqueous electrolyte commonly used in a bulky AGS cannot be used due to volatility and fluidity issues. A Room Temperature Ionic Liquid (RTIL) can be used to replace the aqueous electrolyte since it has negligible vapor pressure; thus, a thin film of RTIL can be realized in a miniaturized AGS. In this paper, we also explain the possibility of using RTIL for a miniaturized AGS by incorporating a quartz crystal microbalance sensor. Several RTILs coated onto modified electrodes used for isomeric gas measurement are presented. Based on the results, the bulky and miniaturized AGS with atomic gold exhibited a higher sensor response than the AGS without atomic gold.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/chemosensors12020027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Amperometric Gas Sensor (AGS) uses an electrode as the transducer element which converts its signal into a current from the electrochemical reaction of analytes taking place at the electrode surface. Many attempts to improve AGS performance, such as modifying the working electrode, applying a particular gas-permeable membrane, and selecting the proper electrolyte, etc., have been reported in the scientific literature. On the other hand, in the materials community, atomic gold has gained much attention because its physicochemical properties dramatically differ from those of gold nanoparticles. This paper provides an overview of the use of atomic gold in AGSs, both in a bulky AGS and a miniaturized AGS. In the miniaturized AGS, the system must be redesigned; for example, the aqueous electrolyte commonly used in a bulky AGS cannot be used due to volatility and fluidity issues. A Room Temperature Ionic Liquid (RTIL) can be used to replace the aqueous electrolyte since it has negligible vapor pressure; thus, a thin film of RTIL can be realized in a miniaturized AGS. In this paper, we also explain the possibility of using RTIL for a miniaturized AGS by incorporating a quartz crystal microbalance sensor. Several RTILs coated onto modified electrodes used for isomeric gas measurement are presented. Based on the results, the bulky and miniaturized AGS with atomic gold exhibited a higher sensor response than the AGS without atomic gold.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用原子金装饰铂/聚苯胺复合材料的安培气体传感器新趋势
安培气体传感器(AGS)使用电极作为传感器元件,通过分析物在电极表面发生的电化学反应将信号转换成电流。科学文献中报道了许多改进 AGS 性能的尝试,如改进工作电极、应用特定的透气膜和选择适当的电解质等。另一方面,在材料界,原子金因其物理化学特性与金纳米粒子有显著不同而备受关注。本文概述了原子金在大型 AGS 和微型 AGS 中的应用。在小型化 AGS 中,系统必须重新设计;例如,由于挥发性和流动性问题,不能使用大型 AGS 中常用的水性电解质。室温离子液体(RTIL)的蒸气压可以忽略不计,因此可以用来替代水性电解质;这样就可以在微型 AGS 中实现 RTIL 薄膜。在本文中,我们还解释了利用 RTIL 将石英晶体微天平传感器集成到微型 AGS 中的可能性。本文介绍了几种涂覆在改良电极上的 RTIL,用于测量异构气体。结果表明,与不含原子金的 AGS 相比,含原子金的笨重微型 AGS 具有更高的传感器响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.
期刊最新文献
Controlled Insertion of Silver Nanoparticles in LbL Nanostructures: Fine-Tuning the Sensing Units of an Impedimetric E-Tongue The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review All-Solid-State Potentiometric Sensor Based on Graphene Oxide as Ion-to-Electron Transducer for Nitrate Detection in Water Samples Defect Engineering in Transition Metal Dichalcogenide-Based Gas Sensors Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1