{"title":"A fast and high-accurate commutation failure identification method for LCC-HVDC system","authors":"Jing Feng, Zhijie Liu, Kejun Li, Bingkun Li, Jiachen Li, Liangzi Li","doi":"10.1049/hve2.12400","DOIUrl":null,"url":null,"abstract":"<p>Commutation failure (CF) is one of the most common issues in line-commuted converter-based high voltage direct current systems (LCC-HVDC), leading to critical power system security and stability problems. Accurate and rapid identification of CF is crucial to prevent subsequent CF in HVDC systems. However, the existing CF identification methods are lack of the required accuracy and speed. The relationship between bridge arm current, commutation voltage, and trigger pulse based on the commutation progress mechanism after the AC fault is analysed in this paper. A novel CF identification method is presented, which utilises the CF identification factor, enabling fast and high-accurate identification without relying on the value of the extinction angle. The proposed method offers a simpler and more efficient implementation in engineering practice. Finally, the effectiveness of the proposed method is verified in both the standard International Council on Large Electric systems HVDC model and the Hardware in Loop test using practical project parameters. The results demonstrate that the proposed method can accurately and fast identify CF.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 3","pages":"721-732"},"PeriodicalIF":4.4000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12400","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12400","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Commutation failure (CF) is one of the most common issues in line-commuted converter-based high voltage direct current systems (LCC-HVDC), leading to critical power system security and stability problems. Accurate and rapid identification of CF is crucial to prevent subsequent CF in HVDC systems. However, the existing CF identification methods are lack of the required accuracy and speed. The relationship between bridge arm current, commutation voltage, and trigger pulse based on the commutation progress mechanism after the AC fault is analysed in this paper. A novel CF identification method is presented, which utilises the CF identification factor, enabling fast and high-accurate identification without relying on the value of the extinction angle. The proposed method offers a simpler and more efficient implementation in engineering practice. Finally, the effectiveness of the proposed method is verified in both the standard International Council on Large Electric systems HVDC model and the Hardware in Loop test using practical project parameters. The results demonstrate that the proposed method can accurately and fast identify CF.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf