Retail Trading and Return Predictability in China

Charles M. Jones, Donghui Shi, Xiaoyan Zhang, Xinran Zhang
{"title":"Retail Trading and Return Predictability in China","authors":"Charles M. Jones, Donghui Shi, Xiaoyan Zhang, Xinran Zhang","doi":"10.1017/s0022109024000085","DOIUrl":null,"url":null,"abstract":"Charles M. Jones, cj88@gsb.columbia.edu, was with Columbia Business School, Donghui Shi, dhshi@fudan.edu.cn, is with Fudan University Fanhai International School of Finance, Xiaoyan Zhang (corresponding author), zhangxiaoyan@pbcsf.tsinghua.edu.cn, is with Tsinghua University PBC School of Finance, and Xinran Zhang, zhangxinran@cufe.edu.cn, is with the Central University of Finance and Economics School of Finance. Xiaoyan Zhang acknowledges the financial support from the National Natural Science Foundation of China [Grant No. 72350710220] and [Grant No.71790605]. Xinran Zhang acknowledges the financial support from the National Natural Science Foundation of China [Grant No. 72303268]. We thank an anonymous referee, Terrance Odean, Laruen Cohen, Ron Kaniel, Hao Zhou, Utpal Bhattacharya, Xintong Zhan, Darwin Choi, and seminar participants at Tsinghua PBC School of Finance, Renmin University, Shanghai Jiaotong University, Fudan University, Shanghai University of Finance and Economics, and conference audiences at the CIFFP, CFRC, CICF, and ABFER Annual Conference for their helpful comments and suggestions. All remaining errors are our own. Using comprehensive account-level data, we separate Chinese retail investors into five groups and document strong heterogeneity in trading dynamics and performances. Retail investors with smaller account sizes cannot predict future returns correctly, display daily momentum patterns, fail to process public news, and show overconfidence and gambling preferences; while retail investors with larger account balances predict future returns correctly, display contrarian patterns, and incorporate public news in trading. With Barber et al. (2009) performance measures, smaller retail investors suffer from poor stock selection abilities and trading costs, while large retail investors’ stock selection abilities are offset by trading costs.","PeriodicalId":509387,"journal":{"name":"Journal of Financial and Quantitative Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial and Quantitative Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0022109024000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Charles M. Jones, cj88@gsb.columbia.edu, was with Columbia Business School, Donghui Shi, dhshi@fudan.edu.cn, is with Fudan University Fanhai International School of Finance, Xiaoyan Zhang (corresponding author), zhangxiaoyan@pbcsf.tsinghua.edu.cn, is with Tsinghua University PBC School of Finance, and Xinran Zhang, zhangxinran@cufe.edu.cn, is with the Central University of Finance and Economics School of Finance. Xiaoyan Zhang acknowledges the financial support from the National Natural Science Foundation of China [Grant No. 72350710220] and [Grant No.71790605]. Xinran Zhang acknowledges the financial support from the National Natural Science Foundation of China [Grant No. 72303268]. We thank an anonymous referee, Terrance Odean, Laruen Cohen, Ron Kaniel, Hao Zhou, Utpal Bhattacharya, Xintong Zhan, Darwin Choi, and seminar participants at Tsinghua PBC School of Finance, Renmin University, Shanghai Jiaotong University, Fudan University, Shanghai University of Finance and Economics, and conference audiences at the CIFFP, CFRC, CICF, and ABFER Annual Conference for their helpful comments and suggestions. All remaining errors are our own. Using comprehensive account-level data, we separate Chinese retail investors into five groups and document strong heterogeneity in trading dynamics and performances. Retail investors with smaller account sizes cannot predict future returns correctly, display daily momentum patterns, fail to process public news, and show overconfidence and gambling preferences; while retail investors with larger account balances predict future returns correctly, display contrarian patterns, and incorporate public news in trading. With Barber et al. (2009) performance measures, smaller retail investors suffer from poor stock selection abilities and trading costs, while large retail investors’ stock selection abilities are offset by trading costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国的零售交易和回报可预测性
查尔斯-M-琼斯(Charles M. Jones),cj88@gsb.columbia.edu,哥伦比亚大学商学院;史东辉(Donghui Shi),dhshi@fudan.edu.cn,复旦大学泛海国际金融学院;张晓燕(通讯作者),zhangxiaoyan@pbcsf.tsinghua.edu.cn,清华大学PBC金融学院;张欣然(Xinran Zhang),zhangxinran@cufe.edu.cn,中央财经大学金融学院。张晓燕感谢国家自然科学基金[批准号:72350710220]和[批准号:71790605]的资助。张欣然感谢国家自然科学基金[批准号:72303268]的资助。感谢匿名评审人 Terrance Odean、Laruen Cohen、Ron Kaniel、Hao Zhou、Utpal Bhattacharya、Xintong Zhan、Darwin Choi 以及清华大学 PBC 金融学院、人民大学、上海交通大学、复旦大学、上海财经大学的研讨会与会者,以及 CIFFP、CFRC、CICF 和 ABFER 年会的与会者提出的有益意见和建议。其余错误均为我们自己所为。利用全面的账户数据,我们将中国散户投资者分为五组,并记录了交易动态和表现的强烈异质性。账户规模较小的散户投资者无法正确预测未来收益,表现出每日动量模式,无法处理公共新闻,并表现出过度自信和赌博偏好;而账户余额较大的散户投资者能够正确预测未来收益,表现出逆向模式,并将公共新闻纳入交易。根据 Barber 等人(2009 年)的绩效衡量标准,小散户投资者的选股能力差,交易成本高,而大散户投资者的选股能力则被交易成本所抵消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do Cash Windfalls Affect Entrepreneurship? Evidence from the Spanish Christmas Lottery Innovation Under Pressure JFQ volume 59 issue 3 Cover and Back matter JFQ volume 59 issue 3 Cover and Front matter ETFs, Creation and Redemption Processes, and Bond Liquidity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1