Cholangioskopie im Fokus: Künstliche Intelligenz verbessert Genauigkeit und Effizienz der Diagnoseverfahren

K. Homayounfar
{"title":"Cholangioskopie im Fokus: Künstliche Intelligenz verbessert Genauigkeit und Effizienz der Diagnoseverfahren","authors":"K. Homayounfar","doi":"10.1159/000537733","DOIUrl":null,"url":null,"abstract":"Background: We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. Methods: In this two-stage study, we first developed and validated CNN1. Then, we performed a multicenter diagnostic trial to compare four DSOC experts and nonexperts against an improved model (CNN2). Lesions were classified into neoplastic and non-neoplastic in accordance with Carlos Robles-Medranda (CRM) and Mendoza disaggregated criteria. The final diagnosis of neoplasia was based on histopathology and 12-month follow-up outcomes. Results: In stage I, CNN2 achieved a mean average precision of 0.88, an intersection over the union value of 83.24 %, and a total loss of 0.0975. For clinical validation, a total of 170 videos from newly included patients were analyzed with the CNN2. Half of cases (50 %) had neoplastic lesions. This model achieved significant accuracy values for neoplastic diagnosis, with a 90.5 % sensitivity, 68.2 % specificity, and 74.0 % and 87.8 % positive and negative predictive values, respectively. The CNN2 model outperformed nonexpert #2 (area under the receiver operating characteristic curve [AUC]-CRM 0.657 vs. AUC-CNN2 0.794, P < 0.05; AUC-Mendoza 0.582 vs. AUC-CNN2 0.794, P < 0.05), nonexpert #4 (AUC-CRM 0.683 vs. AUC-CNN2 0.791, P < 0.05), and expert #4 (AUC-CRM 0.755 vs. AUC-CNN2 0.848, P < 0.05; AUC-Mendoza 0.753 vs. AUC-CNN2 0.848, P < 0.05).","PeriodicalId":413988,"journal":{"name":"Kompass Onkologie","volume":"68 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kompass Onkologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000537733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. Methods: In this two-stage study, we first developed and validated CNN1. Then, we performed a multicenter diagnostic trial to compare four DSOC experts and nonexperts against an improved model (CNN2). Lesions were classified into neoplastic and non-neoplastic in accordance with Carlos Robles-Medranda (CRM) and Mendoza disaggregated criteria. The final diagnosis of neoplasia was based on histopathology and 12-month follow-up outcomes. Results: In stage I, CNN2 achieved a mean average precision of 0.88, an intersection over the union value of 83.24 %, and a total loss of 0.0975. For clinical validation, a total of 170 videos from newly included patients were analyzed with the CNN2. Half of cases (50 %) had neoplastic lesions. This model achieved significant accuracy values for neoplastic diagnosis, with a 90.5 % sensitivity, 68.2 % specificity, and 74.0 % and 87.8 % positive and negative predictive values, respectively. The CNN2 model outperformed nonexpert #2 (area under the receiver operating characteristic curve [AUC]-CRM 0.657 vs. AUC-CNN2 0.794, P < 0.05; AUC-Mendoza 0.582 vs. AUC-CNN2 0.794, P < 0.05), nonexpert #4 (AUC-CRM 0.683 vs. AUC-CNN2 0.791, P < 0.05), and expert #4 (AUC-CRM 0.755 vs. AUC-CNN2 0.848, P < 0.05; AUC-Mendoza 0.753 vs. AUC-CNN2 0.848, P < 0.05).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚焦胆道镜检查:人工智能提高了诊断程序的准确性和效率
背景:我们旨在开发一种卷积神经网络(CNN)模型,用于在实时数字单刀胆道镜检查(DSOC)过程中检测肿瘤病变,并通过与 DSOC 专家和非专家内镜医师的比较对该模型进行临床验证。方法:在这项分两个阶段进行的研究中,我们首先开发并验证了 CNN1。然后,我们进行了一项多中心诊断试验,将四位 DSOC 专家和非专家与改进后的模型(CNN2)进行比较。根据卡洛斯-罗伯斯-梅德兰达(Carlos Robles-Medranda,CRM)和门多萨分类标准,病变被分为肿瘤性和非肿瘤性。肿瘤的最终诊断是基于组织病理学和 12 个月的随访结果。结果在第一阶段,CNN2 的平均精确度为 0.88,与联合值的交叉率为 83.24%,总损失为 0.0975。为了进行临床验证,CNN2 对新纳入患者的 170 个视频进行了分析。半数病例(50%)有肿瘤病变。该模型在肿瘤诊断方面的准确率非常高,灵敏度为 90.5%,特异度为 68.2%,阳性预测值为 74.0%,阴性预测值为 87.8%。CNN2 模型的表现优于非专家 #2 模型(接收器工作特征曲线下面积 [AUC]-CRM 0.657 vs. AUC-CNN2 0.794,P < 0.05;AUC-Mendoza 0.582 vs. AUC-CNN2 0.794, P < 0.05)、4 号非专家(AUC-CRM 0.683 vs. AUC-CNN2 0.791, P < 0.05)和 4 号专家(AUC-CRM 0.755 vs. AUC-CNN2 0.848, P < 0.05; AUC-Mendoza 0.753 vs. AUC-CNN2 0.848, P < 0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molekulare Diagnostik und innovative Therapien beim Mammakarzinom: Ein Wechselspiel mit Potential und Herausforderungen Triple-negativer Brustkrebs: Mit Pembrolizumab die Lebensqualität im metastasierten Stadium verbessern Mammakarzinom: Axilladissektion nicht immer nötig bei Sentinel-Metastasen Einbindung von Patient Reported Outcomes und künstlicher Intelligenz als zentrale Technologien im Gesundheitswesen Onkologie im Aufbruch: Wie KI und Digitalisierung die Zukunft gestalten
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1