Design of an Efficient Non-backdrivable Mechanism with Wrap Spring for Hand Prosthesis

Côme Butin, Yannick Aoustin, David Gouallier, Damien Chablat
{"title":"Design of an Efficient Non-backdrivable Mechanism with Wrap Spring for Hand Prosthesis","authors":"Côme Butin, Yannick Aoustin, David Gouallier, Damien Chablat","doi":"10.1115/1.4064739","DOIUrl":null,"url":null,"abstract":"\n The aim of this article is to create a system that enables power transmission non-backdrivability in a hand prosthesis with a single actuator. This system allows the motor to be stopped while maintaining the gripping force to prevent the held object from being dropped. This non-backdrivability allows users, for example, to release muscle contractions while still keeping a tight grip on an object, as well as completely turning off the prosthesis to avoid unintentional commands that could lead to loosening the object. Beyond the functional aspect of non-backdrivability, the physical non-backdrivability of the transmission enables the full power of the motors to be utilized without exceeding their thermal limits. To be effectively used, the non-backdrivable system must be energy efficient. A state-of-the-art analysis of different non-backdrivable mechanisms is conducted, evaluating their functioning and maximum efficiency. A novel system is developed based on an existing principle but with a focus on simplicity of manufacturing and fewer components compared to existing systems. An analysis is conducted to understand the effect of each mechanism parameter, and a dimensioning procedure is derived. A prototype is developed to compare theoretical values with measured values. The obtained results are analyzed and discussed.","PeriodicalId":508172,"journal":{"name":"Journal of Mechanisms and Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to create a system that enables power transmission non-backdrivability in a hand prosthesis with a single actuator. This system allows the motor to be stopped while maintaining the gripping force to prevent the held object from being dropped. This non-backdrivability allows users, for example, to release muscle contractions while still keeping a tight grip on an object, as well as completely turning off the prosthesis to avoid unintentional commands that could lead to loosening the object. Beyond the functional aspect of non-backdrivability, the physical non-backdrivability of the transmission enables the full power of the motors to be utilized without exceeding their thermal limits. To be effectively used, the non-backdrivable system must be energy efficient. A state-of-the-art analysis of different non-backdrivable mechanisms is conducted, evaluating their functioning and maximum efficiency. A novel system is developed based on an existing principle but with a focus on simplicity of manufacturing and fewer components compared to existing systems. An analysis is conducted to understand the effect of each mechanism parameter, and a dimensioning procedure is derived. A prototype is developed to compare theoretical values with measured values. The obtained results are analyzed and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为手部假肢设计带缠绕弹簧的高效非后驱动机构
本文的目的是创建一个系统,使单个致动器能够在假手中实现动力传输非后向驱动。该系统允许在保持抓取力的同时停止电机,以防止被抓取物体掉落。例如,这种非后向驱动功能允许用户在释放肌肉收缩的同时仍然紧紧抓住物体,也可以完全关闭假肢,以避免可能导致物体松动的无意指令。除了非后向驱动的功能性之外,传动装置的物理非后向驱动性还能在不超过热极限的情况下充分利用电机的功率。为了有效利用,非后向驱动系统必须高效节能。我们对不同的非后向驱动机构进行了最新分析,评估了它们的功能和最大效率。在现有原理的基础上开发了一种新型系统,但与现有系统相比,该系统的重点是制造简单、组件数量少。通过分析,了解了每个机构参数的影响,并得出了一个尺寸确定程序。开发了一个原型,以比较理论值和测量值。对获得的结果进行了分析和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Analysis of a Novel Bio-syncretic Parallel Hip Exoskeleton Based on Torque Requirements A Novel Head-following Algorithm for Multi-Joint Articulated Driven Continuum Robots Development of a 6 degrees- of-freedom hybrid interface intended for teleoperated robotic cervical spine surgery Improving Terrain Adaptability and Compliance in Closed-Chain Leg: Design, Control, and Testing Errata: Static Stability of Planar Contacting Systems: Analytical Treatment in Euclidean Space. ASME J. Mech. Rob., 16(8): p. 081009; DOI:10.1115/1.4064065
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1