Modeling and Validation of a Passenger Car Tire Using Finite Element Analysis

Vehicles Pub Date : 2024-02-09 DOI:10.3390/vehicles6010016
Haniyeh Fathi, Zeinab El-Sayegh, Jing Ren, M. El-Gindy
{"title":"Modeling and Validation of a Passenger Car Tire Using Finite Element Analysis","authors":"Haniyeh Fathi, Zeinab El-Sayegh, Jing Ren, M. El-Gindy","doi":"10.3390/vehicles6010016","DOIUrl":null,"url":null,"abstract":"This paper focuses on the modeling and analysis of a four-groove passenger car tire, size 235/55R19, using finite element analysis. The Mooney–Rivlin material model is employed to define the hyperelastic behavior of the tire rubber compounds for all solid elements. The tire rim is modeled as a rigid body using aluminum alloy material, and the beads are modeled as beam elements using steel material. The tire model is validated in both static and dynamic domains through several simulations and is compared to published measured data. The tire is validated using footprint and vertical stiffness tests in the static domain. In the static footprint test, a steady-state vertical load is applied, and the tire–road contact area is computed. In the vertical stiffness test, a ramp vertical load is applied, and the tire’s vertical displacement is measured to calculate the tire’s vertical stiffness. In the dynamic domain, the tire is validated using drum-cleat and cornering tests. In the drum-cleat test, a drum with a 2.5 m diameter and a cleat with a 15 mm radius is used to excite the tire structure and obtain the frequency of the vertical and longitudinal first modes of vibration, that is, by applying the fast Fourier transformation (FFT) of the vertical and longitudinal reaction forces at the tire center. In addition to this test, the tire model is pre-steered on a flat surface with a two-degree slip angle and subjected to a steady state linear speed of 10 km/h to predict the cornering force and compute the cornering stiffness. In addition, the effect of tire longitudinal speed on the rolling resistance coefficient is then predicted at zero slip angle using the ISO 28580 rolling resistance test. The findings of this research work provide insights into passenger car tire–road interaction analysis and will be further used to perform tire rubber compound material model sensitivity analysis.","PeriodicalId":509694,"journal":{"name":"Vehicles","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles6010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the modeling and analysis of a four-groove passenger car tire, size 235/55R19, using finite element analysis. The Mooney–Rivlin material model is employed to define the hyperelastic behavior of the tire rubber compounds for all solid elements. The tire rim is modeled as a rigid body using aluminum alloy material, and the beads are modeled as beam elements using steel material. The tire model is validated in both static and dynamic domains through several simulations and is compared to published measured data. The tire is validated using footprint and vertical stiffness tests in the static domain. In the static footprint test, a steady-state vertical load is applied, and the tire–road contact area is computed. In the vertical stiffness test, a ramp vertical load is applied, and the tire’s vertical displacement is measured to calculate the tire’s vertical stiffness. In the dynamic domain, the tire is validated using drum-cleat and cornering tests. In the drum-cleat test, a drum with a 2.5 m diameter and a cleat with a 15 mm radius is used to excite the tire structure and obtain the frequency of the vertical and longitudinal first modes of vibration, that is, by applying the fast Fourier transformation (FFT) of the vertical and longitudinal reaction forces at the tire center. In addition to this test, the tire model is pre-steered on a flat surface with a two-degree slip angle and subjected to a steady state linear speed of 10 km/h to predict the cornering force and compute the cornering stiffness. In addition, the effect of tire longitudinal speed on the rolling resistance coefficient is then predicted at zero slip angle using the ISO 28580 rolling resistance test. The findings of this research work provide insights into passenger car tire–road interaction analysis and will be further used to perform tire rubber compound material model sensitivity analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用有限元分析对乘用车轮胎进行建模和验证
本文重点介绍了使用有限元分析方法对尺寸为 235/55R19 的四沟槽乘用车轮胎进行建模和分析。采用 Mooney-Rivlin 材料模型来定义所有实体元素的轮胎橡胶化合物的超弹性行为。轮胎轮辋使用铝合金材料作为刚体建模,胎圈使用钢材料作为梁元素建模。通过多次模拟,在静态和动态领域对轮胎模型进行了验证,并与公布的测量数据进行了比较。在静态领域,通过足迹和垂直刚度测试对轮胎进行了验证。在静态足迹测试中,施加稳定的垂直负载,并计算轮胎与路面的接触面积。在垂直刚度测试中,施加斜坡垂直载荷,测量轮胎的垂直位移,计算轮胎的垂直刚度。在动态领域,轮胎通过鼓式过弯和转弯测试进行验证。在鼓-夹板试验中,使用直径为 2.5 米的鼓和半径为 15 毫米的夹板来激励轮胎结构,并通过对轮胎中心的垂直和纵向反作用力进行快速傅里叶变换(FFT),获得垂直和纵向第一振动模式的频率。除此测试外,还将轮胎模型预先放置在滑移角为两度的平坦路面上,并以 10 km/h 的稳定线速度行驶,以预测转弯力并计算转弯刚度。此外,还利用 ISO 28580 滚动阻力测试预测了零滑移角时轮胎纵向速度对滚动阻力系数的影响。这项研究成果为乘用车轮胎与路面相互作用分析提供了深入见解,并将进一步用于进行轮胎橡胶复合材料模型敏感性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Performance Improvement of Active Suspension System Collaborating with an Active Airfoil Based on a Quarter-Car Model Impacts of a Toll Information Sign and Toll Lane Configuration on Queue Length and Collision Risk at a Toll Plaza with a High Percentage of Heavy Vehicles Virtual Plug-In Hybrid Concept Development and Optimization under Real-World Boundary Conditions Thermal Management of Lithium-Ion Battery Pack Using Equivalent Circuit Model Radar-Based Pedestrian and Vehicle Detection and Identification for Driving Assistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1