Thermal Characterization of Subcooled Flow Boiling in a Pin-Fin Coldplate with Non-Uniform Heating

0 ENGINEERING, MECHANICAL ASME journal of heat and mass transfer Pub Date : 2024-02-09 DOI:10.1115/1.4064709
A. Osman, Yogendra Joshi
{"title":"Thermal Characterization of Subcooled Flow Boiling in a Pin-Fin Coldplate with Non-Uniform Heating","authors":"A. Osman, Yogendra Joshi","doi":"10.1115/1.4064709","DOIUrl":null,"url":null,"abstract":"\n Coldplates are a crucial component in various cooling applications, such as cooling data center servers and power electronics. The unprecedented growth in electronics power density, along with the resulting ultra-high heat fluxes, demands a transition from single-phase forced convection to two-phase flow boiling heat transfer. The majority of studies in the literature have focused on flow boiling in fin-enhanced silicon microgaps and microchannels, with only a few addressing flow boiling in millimeter-scale heat sinks. In the present study, flow boiling of HFE-7200 dielectric fluid in a millimeter-scale pin-fin coldplate is experimentally investigated under non-uniform heating conditions. Four background heaters represent the low-dissipating-power devices. On the other hand, five hotspot heaters mimic the high-heat-flux devices and generate heat fluxes ranging from 50 W/cm2 to 1,000 W/cm2, corresponding to hotspot heat inputs ranging from 62.5 W to 1.25 kW, respectively. The coldplate's thermohydraulic performance is investigated for various flow rates and inlet temperature ranging from 0.5 L/min to 1.5 L/min and from 25°C to 60°C, respectively. A high-speed camera is utilized for a narrow field of view (FOV) flow visualization at a frame rate of 2229 fps, while a digital camera is used for a wider FOV at 60 fps. Flow visualization demonstrated the transition between bubbly, slug/churn, and stratified two-phase flow regimes.","PeriodicalId":510895,"journal":{"name":"ASME journal of heat and mass transfer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME journal of heat and mass transfer","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1115/1.4064709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coldplates are a crucial component in various cooling applications, such as cooling data center servers and power electronics. The unprecedented growth in electronics power density, along with the resulting ultra-high heat fluxes, demands a transition from single-phase forced convection to two-phase flow boiling heat transfer. The majority of studies in the literature have focused on flow boiling in fin-enhanced silicon microgaps and microchannels, with only a few addressing flow boiling in millimeter-scale heat sinks. In the present study, flow boiling of HFE-7200 dielectric fluid in a millimeter-scale pin-fin coldplate is experimentally investigated under non-uniform heating conditions. Four background heaters represent the low-dissipating-power devices. On the other hand, five hotspot heaters mimic the high-heat-flux devices and generate heat fluxes ranging from 50 W/cm2 to 1,000 W/cm2, corresponding to hotspot heat inputs ranging from 62.5 W to 1.25 kW, respectively. The coldplate's thermohydraulic performance is investigated for various flow rates and inlet temperature ranging from 0.5 L/min to 1.5 L/min and from 25°C to 60°C, respectively. A high-speed camera is utilized for a narrow field of view (FOV) flow visualization at a frame rate of 2229 fps, while a digital camera is used for a wider FOV at 60 fps. Flow visualization demonstrated the transition between bubbly, slug/churn, and stratified two-phase flow regimes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加热不均匀的针翅形冷板中过冷流沸腾的热特性分析
冷板是各种冷却应用(如冷却数据中心服务器和电力电子设备)中的关键部件。电子产品功率密度的空前增长以及由此产生的超高热流量,要求从单相强制对流过渡到两相流动沸腾传热。文献中的大多数研究都集中于鳍片增强硅微间隙和微通道中的流动沸腾,只有少数研究涉及毫米级散热器中的流动沸腾。本研究在非均匀加热条件下,对毫米级针状鳍片冷板中 HFE-7200 介电流体的流动沸腾进行了实验研究。四个背景加热器代表低耗散功率装置。另一方面,五个热点加热器模拟了高热流设备,产生的热通量从 50 W/cm2 到 1,000 W/cm2,分别对应于 62.5 W 到 1.25 kW 的热点热输入。研究了冷板在不同流速和入口温度(分别为 0.5 L/min 至 1.5 L/min 和 25°C 至 60°C)下的热液压性能。使用高速相机以 2229 帧/秒的帧速率进行窄视场(FOV)流动可视化,而使用数码相机以 60 帧/秒的帧速率进行宽视场流动可视化。流动可视化显示了气泡、蛞蝓/汹涌和分层两相流状态之间的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Atmospheric Bubbling Fluidized Bed Risers: Effect of Cone Angle on Fluid Dynamics and Heat Transfer Analytic Modelling of 2-D Transient Heat Conduction with Heat Source Under Mixed Boundary Constraints by Symplectic Superposition Melting Behavior Effect of MXene Nanoenhanced Phase Change Material on Energy and Exergyanalysis of Double and Triplex Tube Latent Heat Thermal Energy Storage Experimental and Numerical Evaluation of the Film Cooling Characteristics of the Multi-cavity Tip with Inclined Film Holes Experiments On Gasketed Plate Heat Exchangers with Segmented Corrugation Pattern
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1