Dependence of Radiance of Burning Coal Bed On Ash Formation and Dew Condensation

0 ENGINEERING, MECHANICAL ASME journal of heat and mass transfer Pub Date : 2024-02-07 DOI:10.1115/1.4064667
Hakduck Kim, Seungtaek Lee, Heechang Lim, Juhun Song
{"title":"Dependence of Radiance of Burning Coal Bed On Ash Formation and Dew Condensation","authors":"Hakduck Kim, Seungtaek Lee, Heechang Lim, Juhun Song","doi":"10.1115/1.4064667","DOIUrl":null,"url":null,"abstract":"\n In this study, coal samples with different moisture contents were prepared using a drying and humidification system. Coal samples were placed in a crucible and ignited using a heating wire, to which power was applied during coal combustion. The combustion radiance of coal samples with three moisture contents (0, 20, and 50%) was measured using a narrow-angle radiometer at three temperatures (10, 25, and 50 °C). A numerical simulation model was developed to predict the unsteady radiation characteristics of a coal layer burning on one-dimensional planar plates. The unsteady energy balance equation and radiative transfer equation were solved using the semi-implicit Runge-Kutta method and discrete ordinates method. In addition, the effect of dew condensation on the radiance was investigated. The greatest reduction in radiance was observed during the burning of the high-moisture coal. Furthermore, the effect of ash (converted from coal) on radiance was examined. The results demonstrated that certain changes in the optical properties during the burning of coal to ash can alter the absorption as well as anisotropic scattering, and thereby the radiance, as combustion proceeds.","PeriodicalId":510895,"journal":{"name":"ASME journal of heat and mass transfer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME journal of heat and mass transfer","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1115/1.4064667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, coal samples with different moisture contents were prepared using a drying and humidification system. Coal samples were placed in a crucible and ignited using a heating wire, to which power was applied during coal combustion. The combustion radiance of coal samples with three moisture contents (0, 20, and 50%) was measured using a narrow-angle radiometer at three temperatures (10, 25, and 50 °C). A numerical simulation model was developed to predict the unsteady radiation characteristics of a coal layer burning on one-dimensional planar plates. The unsteady energy balance equation and radiative transfer equation were solved using the semi-implicit Runge-Kutta method and discrete ordinates method. In addition, the effect of dew condensation on the radiance was investigated. The greatest reduction in radiance was observed during the burning of the high-moisture coal. Furthermore, the effect of ash (converted from coal) on radiance was examined. The results demonstrated that certain changes in the optical properties during the burning of coal to ash can alter the absorption as well as anisotropic scattering, and thereby the radiance, as combustion proceeds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
燃烧煤层的辐射率与煤灰形成和露水凝结的关系
在这项研究中,使用干燥和加湿系统制备了不同含水量的煤样。将煤样放入坩埚中,使用加热丝点燃,并在煤燃烧过程中通电。使用窄角辐射计测量了三种含水量(0、20 和 50%)煤样在三种温度(10、25 和 50 °C)下的燃烧辐射率。建立了一个数值模拟模型来预测煤层在一维平面板上燃烧时的非稳定辐射特性。采用半隐式 Runge-Kutta 法和离散序数法求解了非稳态能量平衡方程和辐射传递方程。此外,还研究了露水凝结对辐射度的影响。在高水分煤燃烧过程中,观察到辐射度降低最大。此外,还研究了灰(由煤转化而来)对辐射度的影响。结果表明,在煤燃烧成灰的过程中,光学特性的某些变化会改变吸收和各向异性散射,从而改变燃烧过程中的辐射度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Atmospheric Bubbling Fluidized Bed Risers: Effect of Cone Angle on Fluid Dynamics and Heat Transfer Analytic Modelling of 2-D Transient Heat Conduction with Heat Source Under Mixed Boundary Constraints by Symplectic Superposition Melting Behavior Effect of MXene Nanoenhanced Phase Change Material on Energy and Exergyanalysis of Double and Triplex Tube Latent Heat Thermal Energy Storage Experimental and Numerical Evaluation of the Film Cooling Characteristics of the Multi-cavity Tip with Inclined Film Holes Experiments On Gasketed Plate Heat Exchangers with Segmented Corrugation Pattern
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1