Liangsheng Qiu, Linwei Li, Ashraf Ashour, Siqi Ding, Baoguo Han
{"title":"Monitoring damage of concrete beams via self-sensing cement mortar coating with carbon nanotube-nano carbon black composite fillers","authors":"Liangsheng Qiu, Linwei Li, Ashraf Ashour, Siqi Ding, Baoguo Han","doi":"10.1177/1045389x231221129","DOIUrl":null,"url":null,"abstract":"Self-sensing concrete used in coating form for structural health monitoring of concrete structures has the merits of cost-effectiveness, offering protective effect on structural components, enabling electrical measurements unaffected by steel reinforcement and is also convenient to maintain and replace. This paper investigates the feasibility of using self-sensing cement mortar coating containing carbon nanotube-nano carbon black (CNT-NCB) composite fillers (CNCFs) for damage monitoring of concrete beams. The self-sensing cement mortar coated to concrete beams demonstrated outstanding electrical conductivity (resistivity ranging from 18 to 85 Ω·cm). Under monotonic flexural loadings, self-sensing cement mortar coating with 1.8 vol.% CNCFs featured sensitive self-sensing performance in terms of capturing the initiation of vertical cracks at pure bending span of concrete beams, with fractional change in resistivity (FCR) reaching up to 60.6%. Moreover, FCR variations of self-sensing cement mortar coating exhibited good synchronization and stability with the variation of mid-span deflections of concrete beams during cyclic flexural loadings irrespective of the contents of CNCFs and cyclic amplitudes. Remarkably, it was found that FCR of cement mortar coating basically showed a progressive upward tendency, representing irreversible increase in the resistance during cyclic loading. The irreversible residual FCR indicated the crack occurrence and damage accumulation of concrete beams.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231221129","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Self-sensing concrete used in coating form for structural health monitoring of concrete structures has the merits of cost-effectiveness, offering protective effect on structural components, enabling electrical measurements unaffected by steel reinforcement and is also convenient to maintain and replace. This paper investigates the feasibility of using self-sensing cement mortar coating containing carbon nanotube-nano carbon black (CNT-NCB) composite fillers (CNCFs) for damage monitoring of concrete beams. The self-sensing cement mortar coated to concrete beams demonstrated outstanding electrical conductivity (resistivity ranging from 18 to 85 Ω·cm). Under monotonic flexural loadings, self-sensing cement mortar coating with 1.8 vol.% CNCFs featured sensitive self-sensing performance in terms of capturing the initiation of vertical cracks at pure bending span of concrete beams, with fractional change in resistivity (FCR) reaching up to 60.6%. Moreover, FCR variations of self-sensing cement mortar coating exhibited good synchronization and stability with the variation of mid-span deflections of concrete beams during cyclic flexural loadings irrespective of the contents of CNCFs and cyclic amplitudes. Remarkably, it was found that FCR of cement mortar coating basically showed a progressive upward tendency, representing irreversible increase in the resistance during cyclic loading. The irreversible residual FCR indicated the crack occurrence and damage accumulation of concrete beams.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.