{"title":"Synthesis of glycophospholipid conjugates with mono- and disaccharides by enzymatic transphosphatidylation","authors":"Nikolina Barchan, Patrick Adlercreutz","doi":"10.1002/ejlt.202300240","DOIUrl":null,"url":null,"abstract":"<p>Phospholipids, PLs, are interesting and highly abundant amphiphilic molecules, which self-assemble into 3D nanostructures that have big interest as formulation excipients in, for example, pharma industry. However, the structures that are formed by naturally occurring PLs usually suffer from rigidity problems, and the nanostructures have to be modified in various ways for improved stability. One such approach is by the conjugation of saccharides to the PL head group. In this study, we investigate reaction conditions for the scalable phospholipase D–catalyzed transphosphatidylation reaction for the synthesis of glycophospholipids. Biphasic reaction systems with different solvents are compared with a purely aqueous system with PLs dispersed as vesicles. The investigations showed that use of the biphasic system containing chloroform and a glucose/phosphatidylcholine ratio of 50, in combination with carefully selected enzyme concentration and reaction time, led to an optimized process without any hydrolytic side reaction for the synthesis of phosphatidyl glucose. The reaction system was then applied to a variety of different mono- and disaccharides for the synthesis of a range of different glycophospholipids, resulting in yields up to 85% of phosphatidyl monosaccharides and 35% of disaccharides.</p><p><i>Practical Application</i>: Phospholipids and other polar lipids are of great scientific interest as formulation excipients. The chemical structures of lipids used for such applications have major impact on the properties of the self-aggregated systems. Synthesis of new phospholipids with modified head groups can tremendously widen the portfolio of available choices of formulation excipients and make it possible to make customized formulations with the desired properties. The introduction of saccharides in the hydrophilic part of the phospholipid alters the chemistry of head group and its interaction with surrounding water in vesicle systems and should therefore have a significant effect on its formulating properties compared to natural phospholipids.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":"126 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.202300240","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202300240","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phospholipids, PLs, are interesting and highly abundant amphiphilic molecules, which self-assemble into 3D nanostructures that have big interest as formulation excipients in, for example, pharma industry. However, the structures that are formed by naturally occurring PLs usually suffer from rigidity problems, and the nanostructures have to be modified in various ways for improved stability. One such approach is by the conjugation of saccharides to the PL head group. In this study, we investigate reaction conditions for the scalable phospholipase D–catalyzed transphosphatidylation reaction for the synthesis of glycophospholipids. Biphasic reaction systems with different solvents are compared with a purely aqueous system with PLs dispersed as vesicles. The investigations showed that use of the biphasic system containing chloroform and a glucose/phosphatidylcholine ratio of 50, in combination with carefully selected enzyme concentration and reaction time, led to an optimized process without any hydrolytic side reaction for the synthesis of phosphatidyl glucose. The reaction system was then applied to a variety of different mono- and disaccharides for the synthesis of a range of different glycophospholipids, resulting in yields up to 85% of phosphatidyl monosaccharides and 35% of disaccharides.
Practical Application: Phospholipids and other polar lipids are of great scientific interest as formulation excipients. The chemical structures of lipids used for such applications have major impact on the properties of the self-aggregated systems. Synthesis of new phospholipids with modified head groups can tremendously widen the portfolio of available choices of formulation excipients and make it possible to make customized formulations with the desired properties. The introduction of saccharides in the hydrophilic part of the phospholipid alters the chemistry of head group and its interaction with surrounding water in vesicle systems and should therefore have a significant effect on its formulating properties compared to natural phospholipids.
期刊介绍:
The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects.
Following is a selection of subject areas which are of special interest to EJLST:
Animal and plant products for healthier foods including strategic feeding and transgenic crops
Authentication and analysis of foods for ensuring food quality and safety
Bioavailability of PUFA and other nutrients
Dietary lipids and minor compounds, their specific roles in food products and in nutrition
Food technology and processing for safer and healthier products
Functional foods and nutraceuticals
Lipidomics
Lipid structuring and formulations
Oleochemistry, lipid-derived polymers and biomaterials
Processes using lipid-modifying enzymes
The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).