Distributed robust regression with correntropy losses and regularization kernel networks

Ting Hu, Renjie Guo
{"title":"Distributed robust regression with correntropy losses and regularization kernel networks","authors":"Ting Hu, Renjie Guo","doi":"10.1142/s0219530523500355","DOIUrl":null,"url":null,"abstract":"Distributed learning has attracted considerable attention in recent years due to its power to deal with big data in various science and engineering problems. Based on a divide-and-conquer strategy, this paper studies the distributed robust regression algorithm associated with correntropy losses and coefficient regularization in the scheme of kernel networks, where the kernel functions are not required to be symmetric or positive semi-definite. We establish explicit convergence results of such distributed algorithm depending on the number of data partitions, robustness and regularization parameters. We show that with suitable parameter choices the distributed robust algorithm can obtain the optimal convergence rate in the minimax sense, and simultaneously reduce the computational complexity and memory requirement in the standard (non-distributed) algorithms.","PeriodicalId":503529,"journal":{"name":"Analysis and Applications","volume":"38 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219530523500355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed learning has attracted considerable attention in recent years due to its power to deal with big data in various science and engineering problems. Based on a divide-and-conquer strategy, this paper studies the distributed robust regression algorithm associated with correntropy losses and coefficient regularization in the scheme of kernel networks, where the kernel functions are not required to be symmetric or positive semi-definite. We establish explicit convergence results of such distributed algorithm depending on the number of data partitions, robustness and regularization parameters. We show that with suitable parameter choices the distributed robust algorithm can obtain the optimal convergence rate in the minimax sense, and simultaneously reduce the computational complexity and memory requirement in the standard (non-distributed) algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有熵损失和正则化核网络的分布式稳健回归
近年来,分布式学习因其在各种科学和工程问题中处理大数据的能力而备受关注。本文基于分而治之的策略,研究了核网络方案中与熵损失和系数正则化相关的分布式鲁棒回归算法,其中核函数不要求对称或正半有限。我们根据数据分区的数量、鲁棒性和正则化参数,建立了这种分布式算法的明确收敛结果。我们证明,在参数选择合适的情况下,分布式鲁棒算法可以获得最小值意义上的最优收敛率,同时降低标准(非分布式)算法的计算复杂度和内存需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuous solutions for a two-dimensional cross-diffusion problem involving doubly degenerate diffusion and logistic proliferation Local Well-posedness of a Viscoelastic Fluid Model for Reactive Polymers Global Weak Solutions to a Nonlinear Chemotaxis System with Singular Density-Suppressed Motility Uniform Boundary Estimates for Neumann Problems in Parabolic Homogenization On Choosing Initial Values of Iteratively Reweighted ℓ1 Algorithms for the Piece-wise Exponential Penalty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1