Radon transform based malware classification in cyber-physical system using deep learning

Rasim Alguliyev, Ramiz Aliguliyev, Lyudmila Sukhostat
{"title":"Radon transform based malware classification in cyber-physical system using deep learning","authors":"Rasim Alguliyev,&nbsp;Ramiz Aliguliyev,&nbsp;Lyudmila Sukhostat","doi":"10.1016/j.rico.2024.100382","DOIUrl":null,"url":null,"abstract":"<div><p>The development of cyber-physical systems entails the growth and diversity of malware, which increases the scale of cybersecurity threats. Attackers use malicious software to compromise various components of cyber-physical systems. Existing technologies make it possible to reduce the risk of malware infection using vulnerability and intrusion scanners, network analyzers, and other tools. However, there is no perfect protection against the increasingly sophisticated types of malware. The goal of this research is to solve this problem by combining different visual representations of malware and detection models based on transfer learning. This method considers two pre-trained deep neural network models (AlexNet and MobileNet) that are capable of differentiating various malware families using grayscale images. Radon transform is applied to the resulting grayscale malware images to improve the classification accuracy of the new malware binaries. The proposed model is evaluated using three datasets (Microsoft Malware Classification, IoT_Malware and MalNet-Image datasets). The results show the superiority of the proposed model based on transfer learning over other methods in terms of the efficiency of classifying malware families aimed at infecting cyber-physical systems.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"14 ","pages":"Article 100382"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000122/pdfft?md5=3ff4f97966201510a16ae2d3cfdf3a5e&pid=1-s2.0-S2666720724000122-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The development of cyber-physical systems entails the growth and diversity of malware, which increases the scale of cybersecurity threats. Attackers use malicious software to compromise various components of cyber-physical systems. Existing technologies make it possible to reduce the risk of malware infection using vulnerability and intrusion scanners, network analyzers, and other tools. However, there is no perfect protection against the increasingly sophisticated types of malware. The goal of this research is to solve this problem by combining different visual representations of malware and detection models based on transfer learning. This method considers two pre-trained deep neural network models (AlexNet and MobileNet) that are capable of differentiating various malware families using grayscale images. Radon transform is applied to the resulting grayscale malware images to improve the classification accuracy of the new malware binaries. The proposed model is evaluated using three datasets (Microsoft Malware Classification, IoT_Malware and MalNet-Image datasets). The results show the superiority of the proposed model based on transfer learning over other methods in terms of the efficiency of classifying malware families aimed at infecting cyber-physical systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习在网络物理系统中进行基于 Radon 变换的恶意软件分类
网络物理系统的发展带来了恶意软件的增长和多样性,从而扩大了网络安全威胁的规模。攻击者利用恶意软件破坏网络物理系统的各种组件。现有技术可以利用漏洞和入侵扫描仪、网络分析仪和其他工具降低恶意软件感染的风险。然而,面对日益复杂的恶意软件类型,并没有完美的防护措施。本研究的目标是通过结合不同的恶意软件可视化表示和基于迁移学习的检测模型来解决这一问题。该方法考虑了两个预先训练好的深度神经网络模型(AlexNet 和 MobileNet),它们能够利用灰度图像区分不同的恶意软件系列。对得到的灰度恶意软件图像进行 Radon 变换,以提高新恶意软件二进制的分类准确性。我们使用三个数据集(微软恶意软件分类、物联网恶意软件和 MalNet-Image 数据集)对所提出的模型进行了评估。结果表明,在对旨在感染网络物理系统的恶意软件系列进行分类的效率方面,基于迁移学习提出的模型优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
Optimal control analysis of a mathematical model for guava nutrients in an integrated farming with cost-effectiveness Observer-based fuzzy T–S control with an estimation error guarantee for MPPT of a photovoltaic battery charger in partial shade conditions Satellite imagery, big data, IoT and deep learning techniques for wheat yield prediction in Morocco Selective opposition based constrained barnacle mating optimization: Theory and applications Comparative exploration on EEG signal filtering using window control methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1