Lucas David Biondo , Christian Manera , Cesar Aguzzoli , Marcelo Godinho
{"title":"DoE-driven thermodynamic assessment of COX-free hydrogen production from methane decomposition","authors":"Lucas David Biondo , Christian Manera , Cesar Aguzzoli , Marcelo Godinho","doi":"10.1016/j.catcom.2024.106874","DOIUrl":null,"url":null,"abstract":"<div><p>Methane decomposition for hydrogen production is classified as blue turquoise, an intermediate between green and blue hydrogen. It does not generate greenhouse gas (GHG) emissions and does not require installation of carbon capture, utilization, and storage (CCUS) processes, becoming environmentally competitive among technologies, as the only byproduct is solid carbon. This research contributes to optimize temperature and gas hourly space velocity parameters for methane conversion adopting design of experiment (DoE) concept to collect data and identify significant factors through a 3<sup>2</sup> factorial design. Highest methane conversion, considering thermodynamic equilibrium limit of reaction, was obtained at 900 K and 6000 mL.h<sup>−1</sup>.g<sup>−1</sup>. The catalyst used was characterized by SEM, BET, and XRD.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106874"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000347/pdfft?md5=218fd30ab70bb6b574b766fa7282d613&pid=1-s2.0-S1566736724000347-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000347","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methane decomposition for hydrogen production is classified as blue turquoise, an intermediate between green and blue hydrogen. It does not generate greenhouse gas (GHG) emissions and does not require installation of carbon capture, utilization, and storage (CCUS) processes, becoming environmentally competitive among technologies, as the only byproduct is solid carbon. This research contributes to optimize temperature and gas hourly space velocity parameters for methane conversion adopting design of experiment (DoE) concept to collect data and identify significant factors through a 32 factorial design. Highest methane conversion, considering thermodynamic equilibrium limit of reaction, was obtained at 900 K and 6000 mL.h−1.g−1. The catalyst used was characterized by SEM, BET, and XRD.
期刊介绍:
Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.