{"title":"SERCA-1 conformational change exerted by the Ca2+-channel blocker diltiazem affects mammalian skeletal muscle function","authors":"Aura Jiménez-Garduño , Ibrahim Ramirez-Soto , Ileana Miranda-Rodríguez , Sofía Gitler , Alicia Ortega","doi":"10.1016/j.ceca.2024.102852","DOIUrl":null,"url":null,"abstract":"<div><p>In skeletal muscle (SM), inward Ca<sup>2+</sup>-currents have no apparent role in excitation-contraction coupling (e-c coupling), however the Ca<sup>2+</sup>-channel blocker can affect twitch and tetanic muscle in mammalian SM. Experiments were conducted to study how diltiazem (DLZ) facilitates e-c coupling and inhibits contraction. 1) In complete <em>Extensor Digitorum Longus</em> (EDL) muscle and single intact fibres, 0.03 mM DLZ causes twitch potentiation and decreases force during tetanic activity, with increased fatigue. 2) In split open fibres isolated from EDL fibres, DLZ inhibits sarcoplasmic reticulum (SR) Ca<sup>2+</sup>-loading in a dose-dependent manner and has a potentiating effect on caffeine-induced SR Ca<sup>2+</sup>-release. 3) In isolated light SR (LSR) vesicles, SERCA1 hydrolytic activity is not affected by DLZ up to 0.2 mM. However, ATP-dependent Ca<sup>2+</sup>-uptake was inhibited in a dose-dependent manner at a concentration where e-c coupling is changed. 4) The passive Ca<sup>2+</sup>-efflux from LSR was reduced by half with 0.03 mM diltiazem, indicating that SR leaking does not account for the decreased Ca<sup>2+</sup>-uptake. 5) The denaturation profile of the SERCA Ca<sup>2+</sup>-binding domain has lower thermal stability in the presence of DLZ in a concentration-dependent manner, having no effect on the nucleotide-binding domain. We conclude that the effect of DLZ on SM is exerted by crossing the sarcolemma and interacting directly with the SERCA Ca<sup>2+</sup>-binding domain, affecting SR Ca<sup>2+</sup>-loading during relaxation, which has a consequence on SM contractility. Diltiazem effect on SM could be utilized as a tool to understand SM e-c coupling and muscle fatigue.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"119 ","pages":"Article 102852"},"PeriodicalIF":4.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000101","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In skeletal muscle (SM), inward Ca2+-currents have no apparent role in excitation-contraction coupling (e-c coupling), however the Ca2+-channel blocker can affect twitch and tetanic muscle in mammalian SM. Experiments were conducted to study how diltiazem (DLZ) facilitates e-c coupling and inhibits contraction. 1) In complete Extensor Digitorum Longus (EDL) muscle and single intact fibres, 0.03 mM DLZ causes twitch potentiation and decreases force during tetanic activity, with increased fatigue. 2) In split open fibres isolated from EDL fibres, DLZ inhibits sarcoplasmic reticulum (SR) Ca2+-loading in a dose-dependent manner and has a potentiating effect on caffeine-induced SR Ca2+-release. 3) In isolated light SR (LSR) vesicles, SERCA1 hydrolytic activity is not affected by DLZ up to 0.2 mM. However, ATP-dependent Ca2+-uptake was inhibited in a dose-dependent manner at a concentration where e-c coupling is changed. 4) The passive Ca2+-efflux from LSR was reduced by half with 0.03 mM diltiazem, indicating that SR leaking does not account for the decreased Ca2+-uptake. 5) The denaturation profile of the SERCA Ca2+-binding domain has lower thermal stability in the presence of DLZ in a concentration-dependent manner, having no effect on the nucleotide-binding domain. We conclude that the effect of DLZ on SM is exerted by crossing the sarcolemma and interacting directly with the SERCA Ca2+-binding domain, affecting SR Ca2+-loading during relaxation, which has a consequence on SM contractility. Diltiazem effect on SM could be utilized as a tool to understand SM e-c coupling and muscle fatigue.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes