Cycloalkanes oxidation with O2 catalyzed by a novel metalloporphyrin-based covalent coupling structure with bimetallic catalytic centers through synergistic mode

IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Communications Pub Date : 2024-02-01 DOI:10.1016/j.catcom.2024.106876
Jia-Ye Ni, Yan-Bo Ding, Jing Sun, Hong-Ke Wu, Hai-Min Shen, Yuan-Bin She
{"title":"Cycloalkanes oxidation with O2 catalyzed by a novel metalloporphyrin-based covalent coupling structure with bimetallic catalytic centers through synergistic mode","authors":"Jia-Ye Ni,&nbsp;Yan-Bo Ding,&nbsp;Jing Sun,&nbsp;Hong-Ke Wu,&nbsp;Hai-Min Shen,&nbsp;Yuan-Bin She","doi":"10.1016/j.catcom.2024.106876","DOIUrl":null,"url":null,"abstract":"<div><p>A novel bimetallic central covalent coupling catalytic system (Porp.Co@Zn-C6) based on Tris(4-Cl)(4-OH)Co and Tris(4-Cl)(4-OH)Zn was established to improve cycloalkanes oxidation. In particular, the partially-oxidized product's selectivity rose from 86.4% to 97.5% and the cyclohexane conversion was boosted from 3.80% to 4.41%. Simultaneously achieved improvements in conversion and selectivity. In this system, Co(II) was employed to activate molecular oxygen, Zn(II) was utilized to strengthen the utilization of cyclohexyl hydroperoxide and to be avoided its thermal decomposition in disorder state. This proposal can be very suitable for other cycloalkanes as well, which will improve the conversion and selectivity concurrently.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106876"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000360/pdfft?md5=637c64fd64077690f6c55455185f5fa0&pid=1-s2.0-S1566736724000360-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000360","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel bimetallic central covalent coupling catalytic system (Porp.Co@Zn-C6) based on Tris(4-Cl)(4-OH)Co and Tris(4-Cl)(4-OH)Zn was established to improve cycloalkanes oxidation. In particular, the partially-oxidized product's selectivity rose from 86.4% to 97.5% and the cyclohexane conversion was boosted from 3.80% to 4.41%. Simultaneously achieved improvements in conversion and selectivity. In this system, Co(II) was employed to activate molecular oxygen, Zn(II) was utilized to strengthen the utilization of cyclohexyl hydroperoxide and to be avoided its thermal decomposition in disorder state. This proposal can be very suitable for other cycloalkanes as well, which will improve the conversion and selectivity concurrently.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于金属卟啉的新型共价偶联结构与双金属催化中心通过协同模式催化环烷烃与 O2 的氧化反应
建立了一种基于三(4-Cl)(4-OH)Co 和三(4-Cl)(4-OH)Zn 的新型双金属中心共价偶联催化体系 (Porp.Co@Zn-C6),以改善环烷烃的氧化。其中,部分氧化产物的选择性从 86.4% 提高到 97.5%,环己烷的转化率从 3.80% 提高到 4.41%。同时提高了转化率和选择性。在该系统中,Co(II) 被用来激活分子氧,Zn(II) 被用来加强环己基过氧化氢的利用,并避免其在无序状态下的热分解。这一建议也非常适用于其他环烷烃,可同时提高转化率和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Communications
Catalysis Communications 化学-物理化学
CiteScore
6.20
自引率
2.70%
发文量
183
审稿时长
46 days
期刊介绍: Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.
期刊最新文献
Fast and efficient processes for oxidation and monitoring of polycyclic aromatic hydrocarbons in environmental matrices Experimental and theoretical studies on 1-butyl-3-methyl imidazolium bromine ionic liquids-promoted conversion of aerobic oxidation of cumene Efficient activation of peroxymonosulfate with zirconia-supported manganese and cobalt catalysts for oxidation of ibuprofen Nb2O5/MWCNT nanocomposites for the degradation of ibuprofen via photocatalysis and catalytic ozonation High-pressure hydrothermal dope Ce into MoVTeNbOx for one-step oxidation of propylene to acrylic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1