{"title":"An Adaptive Genetic Algorithm Optimizes Double-Hidden Layer BPNN for Rapid Detection of Moisture Content of Green Tea in Processing","authors":"Zeling Zhang, Liyuan Deng","doi":"10.1155/2024/5876051","DOIUrl":null,"url":null,"abstract":"<p>Moisture content (M<sub>C</sub>) plays a crucial role in evaluating the quality of tea processing. However, the current automated production line for green tea heavily relies on manual methods to determine M<sub>C</sub>, which leads to low productivity and inadequate automation. Therefore, there is an urgent need for a fast, accurate, and convenient M<sub>C</sub> detection method. In this study, near-infrared spectroscopy (NIRS) data were collected from seven stages of green tea processing and preprocessed using various techniques, such as Savitzky-Golay (SG) and detrend (DT), to reduce spectral noise. Subsequently, feature variables of the preprocessed spectral data were selected using full-band principal component analysis (PCA) and competitive adaptive reweighted sampling (CARS). Afterwards, prediction models for M<sub>C</sub> of green tea were developed using partial least squares regression (PLSR) and back-propagation neural network (BPNN). To address the convergence speed and local optima issues of BPNN, the study proposes an adaptive probabilistic genetic algorithm (AGA) to optimize the initial weights and thresholds of BPNN, including single and double-hidden layers, respectively. The results demonstrate that the double-hidden SG-DT-PCA-AGA-BPNN model outperforms the single-hidden layer model, achieving a high correlation coefficient (<i>R</i><sub><i>P</i></sub>) of 0.994 and a low root mean square error (RMSEP) of 1.01%. This study highlights the effectiveness of increasing the number of hidden layers and using AGA to optimize the initial thresholds and weights of BPNN in improving the prediction accuracy. Furthermore, it provides a new approach to implement M<sub>C</sub> detection technology in green tea processing.</p>","PeriodicalId":15717,"journal":{"name":"Journal of Food Processing and Preservation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Processing and Preservation","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5876051","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Moisture content (MC) plays a crucial role in evaluating the quality of tea processing. However, the current automated production line for green tea heavily relies on manual methods to determine MC, which leads to low productivity and inadequate automation. Therefore, there is an urgent need for a fast, accurate, and convenient MC detection method. In this study, near-infrared spectroscopy (NIRS) data were collected from seven stages of green tea processing and preprocessed using various techniques, such as Savitzky-Golay (SG) and detrend (DT), to reduce spectral noise. Subsequently, feature variables of the preprocessed spectral data were selected using full-band principal component analysis (PCA) and competitive adaptive reweighted sampling (CARS). Afterwards, prediction models for MC of green tea were developed using partial least squares regression (PLSR) and back-propagation neural network (BPNN). To address the convergence speed and local optima issues of BPNN, the study proposes an adaptive probabilistic genetic algorithm (AGA) to optimize the initial weights and thresholds of BPNN, including single and double-hidden layers, respectively. The results demonstrate that the double-hidden SG-DT-PCA-AGA-BPNN model outperforms the single-hidden layer model, achieving a high correlation coefficient (RP) of 0.994 and a low root mean square error (RMSEP) of 1.01%. This study highlights the effectiveness of increasing the number of hidden layers and using AGA to optimize the initial thresholds and weights of BPNN in improving the prediction accuracy. Furthermore, it provides a new approach to implement MC detection technology in green tea processing.
期刊介绍:
The journal presents readers with the latest research, knowledge, emerging technologies, and advances in food processing and preservation. Encompassing chemical, physical, quality, and engineering properties of food materials, the Journal of Food Processing and Preservation provides a balance between fundamental chemistry and engineering principles and applicable food processing and preservation technologies.
This is the only journal dedicated to publishing both fundamental and applied research relating to food processing and preservation, benefiting the research, commercial, and industrial communities. It publishes research articles directed at the safe preservation and successful consumer acceptance of unique, innovative, non-traditional international or domestic foods. In addition, the journal features important discussions of current economic and regulatory policies and their effects on the safe and quality processing and preservation of a wide array of foods.