Human Serum Albumin Grafted by Monomeric and Polymeric β-Cyclodextrin as Drug Delivery System for Levofloxacin with Improved Pharmacological Properties

T. Kopnova, L. R. Yakupova, N. G. Belogurova, E. V. Kudryashova
{"title":"Human Serum Albumin Grafted by Monomeric and Polymeric β-Cyclodextrin as Drug Delivery System for Levofloxacin with Improved Pharmacological Properties","authors":"T. Kopnova, L. R. Yakupova, N. G. Belogurova, E. V. Kudryashova","doi":"10.3390/futurepharmacol4010010","DOIUrl":null,"url":null,"abstract":"Human serum albumin (HSA) is a multifunctional protein, known to be a natural carrier for a number of endogenous and exogenous compounds, including drugs. HSA-based drugs formulation is a clinically validated approach to improve pharmacological properties and biodistribution (such as in Abraxane). Based on this, one might like to modify HSA in a way that its distribution is more favorable for certain therapeutic purposes. Levofloxacin (LV), a broad-spectrum antibiotic drug, could benefit from extended systemic exposure, and stronger interactions with plasma proteins could be useful for this purpose. We engrafted monomeric or polymeric cyclodextrins (CDs) on the surface of HSA molecules to strengthen the LV adsorption (the CD−LV dissociation constant is three orders of magnitude lower than that of HSA−LV). We found that (HSA−HPolS)conj+LV exhibited the highest activity against E. coli, whereas (HSA−HPCD)conj+LV was the most effective against B. subtilis, and both HSA conjugates were more potent than LV alone or LV with HSA. Further fine-tuning of HSA could yield an improvement in biodistribution and thus a more favorable risk/benefit ratio.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"118 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/futurepharmacol4010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human serum albumin (HSA) is a multifunctional protein, known to be a natural carrier for a number of endogenous and exogenous compounds, including drugs. HSA-based drugs formulation is a clinically validated approach to improve pharmacological properties and biodistribution (such as in Abraxane). Based on this, one might like to modify HSA in a way that its distribution is more favorable for certain therapeutic purposes. Levofloxacin (LV), a broad-spectrum antibiotic drug, could benefit from extended systemic exposure, and stronger interactions with plasma proteins could be useful for this purpose. We engrafted monomeric or polymeric cyclodextrins (CDs) on the surface of HSA molecules to strengthen the LV adsorption (the CD−LV dissociation constant is three orders of magnitude lower than that of HSA−LV). We found that (HSA−HPolS)conj+LV exhibited the highest activity against E. coli, whereas (HSA−HPCD)conj+LV was the most effective against B. subtilis, and both HSA conjugates were more potent than LV alone or LV with HSA. Further fine-tuning of HSA could yield an improvement in biodistribution and thus a more favorable risk/benefit ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单体和聚合β-环糊精接枝的人血清白蛋白作为左氧氟沙星的给药系统,药理特性得到改善
人血清白蛋白(HSA)是一种多功能蛋白质,是包括药物在内的多种内源性和外源性化合物的天然载体。基于 HSA 的药物制剂是一种经过临床验证的改善药理特性和生物分布的方法(如 Abraxane)。在此基础上,人们可能希望对 HSA 进行改性,使其分布更有利于某些治疗目的。左氧氟沙星(LV)是一种广谱抗生素药物,它可以从扩大的全身暴露中获益,而与血浆蛋白更强的相互作用可能有助于实现这一目的。我们在 HSA 分子表面接枝了单体或聚合环糊精(CD),以加强对 LV 的吸附(CD-LV 的解离常数比 HSA-LV 低三个数量级)。我们发现(HSA-HPolS)conj+LV对大肠杆菌的活性最高,而(HSA-HPCD)conj+LV对枯草杆菌最有效,两种HSA共轭物都比单独的LV或含有HSA的LV更有效。进一步微调 HSA 可改善生物分布,从而获得更有利的风险/效益比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents Biologics, Small Molecules and More in Inflammatory Bowel Disease: The Present and the Future Comparative Study of the Effects of Curcuminoids and Tetrahydrocurcuminoids on Melanogenesis: Role of the Methoxy Groups Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1