{"title":"Rethinking multimodal corpora from the perspective of Peircean semiotics","authors":"Tuomo Hiippala","doi":"10.3389/fcomm.2024.1337434","DOIUrl":null,"url":null,"abstract":"This article discusses annotating and querying multimodal corpora from the perspective of Peircean semiotics. Corpora have had a significant impact on empirical research in the field of linguistics and are increasingly considered essential for multimodality research as well. I argue that Peircean semiotics can be used to gain a deeper understanding of multimodal corpora and rethink the way we work with them. I demonstrate the proposed approach in an empirical study, which uses Peircean semiotics to guide the process of querying multimodal corpora using computer vision and vector-based information retrieval. The results show that computer vision algorithms are restricted to particular domains of experience, which may be circumscribed using Peirce's theory of semiotics. However, the applicability of such algorithms may be extended using annotations, which capture aspects of meaning-making that remain beyond algorithms. Overall, the results suggest that the process of building and analysing multimodal corpora should be actively theorized in order to identify new ways of working with the information stored in them, particularly in terms of dividing the annotation tasks between humans and algorithms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"61 10","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcomm.2024.1337434","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article discusses annotating and querying multimodal corpora from the perspective of Peircean semiotics. Corpora have had a significant impact on empirical research in the field of linguistics and are increasingly considered essential for multimodality research as well. I argue that Peircean semiotics can be used to gain a deeper understanding of multimodal corpora and rethink the way we work with them. I demonstrate the proposed approach in an empirical study, which uses Peircean semiotics to guide the process of querying multimodal corpora using computer vision and vector-based information retrieval. The results show that computer vision algorithms are restricted to particular domains of experience, which may be circumscribed using Peirce's theory of semiotics. However, the applicability of such algorithms may be extended using annotations, which capture aspects of meaning-making that remain beyond algorithms. Overall, the results suggest that the process of building and analysing multimodal corpora should be actively theorized in order to identify new ways of working with the information stored in them, particularly in terms of dividing the annotation tasks between humans and algorithms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.