A novel quantum key distribution resistant against large-pulse attacks

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2024-02-12 DOI:10.1049/qtc2.12089
Keaotshepha Karabo, Comfort Sekga, Connor Kissack, Mhlambululi Mafu, Francesco Petruccione
{"title":"A novel quantum key distribution resistant against large-pulse attacks","authors":"Keaotshepha Karabo,&nbsp;Comfort Sekga,&nbsp;Connor Kissack,&nbsp;Mhlambululi Mafu,&nbsp;Francesco Petruccione","doi":"10.1049/qtc2.12089","DOIUrl":null,"url":null,"abstract":"<p>Quantum key distribution (QKD) offers information-theoretic security by leveraging the principles of quantum mechanics. This means the security is independent of all future advances in algorithm or computational power. However, due to the non-availability of single-photon sources, most traditional QKD protocols are vulnerable to various attacks, such as photon number-splitting (PNS) attacks. Also, the imperfections in the measuring devices open a loophole for side channels that an eavesdropper may exploit to launch attacks such as large-pulse attacks. As a result, this compromises the security of transmitted information. To address these challenges, the authors present a QKD protocol that is secure against both large-pulse attacks and PNS attacks at zero-error, in which the eavesdropper does not introduce any error, but still, the legitimate users of the system cannot distil a secure key. A notable feature of the proposed protocol is that it promotes greater robustness against both attacks than the Bennett-Brassard 1984 (BB84) protocol or the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) protocol.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 3","pages":"282-290"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum key distribution (QKD) offers information-theoretic security by leveraging the principles of quantum mechanics. This means the security is independent of all future advances in algorithm or computational power. However, due to the non-availability of single-photon sources, most traditional QKD protocols are vulnerable to various attacks, such as photon number-splitting (PNS) attacks. Also, the imperfections in the measuring devices open a loophole for side channels that an eavesdropper may exploit to launch attacks such as large-pulse attacks. As a result, this compromises the security of transmitted information. To address these challenges, the authors present a QKD protocol that is secure against both large-pulse attacks and PNS attacks at zero-error, in which the eavesdropper does not introduce any error, but still, the legitimate users of the system cannot distil a secure key. A notable feature of the proposed protocol is that it promotes greater robustness against both attacks than the Bennett-Brassard 1984 (BB84) protocol or the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) protocol.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可抵御大脉冲攻击的新型量子密钥分发技术
量子密钥分发(QKD)利用量子力学原理提供信息理论上的安全性。这意味着其安全性不受未来算法或计算能力进步的影响。然而,由于无法获得单光子源,大多数传统的 QKD 协议都容易受到各种攻击,如光子数分裂(PNS)攻击。此外,测量设备的不完善也为侧信道打开了漏洞,窃听者可能会利用侧信道发动攻击,如大脉冲攻击。因此,这损害了传输信息的安全性。为了应对这些挑战,作者提出了一种 QKD 协议,它能在零误差条件下安全地抵御大脉冲攻击和 PNS 攻击,在零误差条件下,窃听者不会引入任何误差,但系统的合法用户仍无法提炼出安全密钥。与 Bennett-Brassard 1984(BB84)协议或 Scarani-Acin-Ribordy-Gisin 2004(SARG04)协议相比,所提协议的一个显著特点是,它在抵御这两种攻击方面具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Routing in quantum networks with end-to-end knowledge Beamforming optimization via quantum algorithms using Variational Quantum Eigensolver and Quantum Approximate Optimization Algorithm Quantum teleportation in higher dimension and entanglement distribution via quantum switches Real-time seedless post-processing for quantum random number generators Quantum blockchain: Trends, technologies, and future directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1