Rajesh Kannan, S. Ramalingam, Senthil Sampath, Mukilarasan Nedunchezhiyan, Damodharan Dillikannan, R. Jayabal
{"title":"Optimization and synthesis process of biodiesel production from coconut oil using central composite rotatable design of response surface methodology","authors":"Rajesh Kannan, S. Ramalingam, Senthil Sampath, Mukilarasan Nedunchezhiyan, Damodharan Dillikannan, R. Jayabal","doi":"10.1177/09544089241230251","DOIUrl":null,"url":null,"abstract":"In the transportation and power production industries, the use of renewable and environmentally friendly fuels has grown in importance. Biodiesel derived from coconut oil contains over 90% saturated fatty acids. Biodiesel was made using alkaline transesterification since coconut oil has a free fatty acid content of less than 2.5%. Enzymatic or chemical transesterification are both possible. For the synthesis of coconut biodiesel, the optimal processing conditions are 60 °C for 1 h, a 6:1 ratio, 1% potassium hydroxide and a 95% yield. According to the experiment, 55 °C was the ideal reaction temperature for using coconut oil to produce biodiesel. Sixty minutes was the ideal amount of time to extract biodiesel from coconut oil. The methanol-to-oil molar ratio raised yield from 6:1 to 8:1, a 95% increase. Significant amounts of an alkaline catalyst, which allows soap to develop under the influence of fatty acids, are responsible for the high yield response; it is concluded that 1 wt% would be an appropriate catalyst concentration for the present investigation. The central composite rotatable design (CCRD) of the response surface methodology method is used to optimize several process parameters, including temperature, reaction duration, methanol-to-oil ratio and catalyst concentration. The CCRD optimization approach produced better results. The following are the final, optimized results: coconut oil methyl ester ratio: 96.69%, temperature: 55 °C; duration: 59.2 min; catalyst concentration: 0.7; molar ratio: 6.4.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"80 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241230251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the transportation and power production industries, the use of renewable and environmentally friendly fuels has grown in importance. Biodiesel derived from coconut oil contains over 90% saturated fatty acids. Biodiesel was made using alkaline transesterification since coconut oil has a free fatty acid content of less than 2.5%. Enzymatic or chemical transesterification are both possible. For the synthesis of coconut biodiesel, the optimal processing conditions are 60 °C for 1 h, a 6:1 ratio, 1% potassium hydroxide and a 95% yield. According to the experiment, 55 °C was the ideal reaction temperature for using coconut oil to produce biodiesel. Sixty minutes was the ideal amount of time to extract biodiesel from coconut oil. The methanol-to-oil molar ratio raised yield from 6:1 to 8:1, a 95% increase. Significant amounts of an alkaline catalyst, which allows soap to develop under the influence of fatty acids, are responsible for the high yield response; it is concluded that 1 wt% would be an appropriate catalyst concentration for the present investigation. The central composite rotatable design (CCRD) of the response surface methodology method is used to optimize several process parameters, including temperature, reaction duration, methanol-to-oil ratio and catalyst concentration. The CCRD optimization approach produced better results. The following are the final, optimized results: coconut oil methyl ester ratio: 96.69%, temperature: 55 °C; duration: 59.2 min; catalyst concentration: 0.7; molar ratio: 6.4.