Complementary interstellar detections from the heliotail

Sarah A. Spitzer, M. Kornbleuth, M. Opher, J. Gilbert, J. M. Raines, S. Lepri
{"title":"Complementary interstellar detections from the heliotail","authors":"Sarah A. Spitzer, M. Kornbleuth, M. Opher, J. Gilbert, J. M. Raines, S. Lepri","doi":"10.3389/fspas.2023.1163519","DOIUrl":null,"url":null,"abstract":"The heliosphere is a protective shield around the solar system created by the Sun’s interaction with the local interstellar medium (LISM) through the solar wind, transients, and interplanetary magnetic field. The shape of the heliosphere is directly linked with interactions with the surrounding LISM, in turn affecting the space environment within the heliosphere. Understanding the shape of the heliosphere, the LISM properties, and their interactions is critical for understanding the impacts within the solar system and for understanding other astrospheres. Understanding the shape of the heliosphere requires an understanding of the heliotail, as the shape is highly dependent upon the heliotail and its LISM interactions. The heliotail additionally presents an opportunity for more direct in situ measurement of interstellar particles from within the heliosphere, given the likelihood of magnetic reconnection and turbulent mixing between the LISM and the heliotail. Measurements in the heliotail should be made of pickup ions, energetic neutral atoms, low energy neutrals, and cosmic rays, as well as interstellar ions that may be injected into the heliosphere through processes such as magnetic reconnection, which can create a direct magnetic link from the LISM into the heliosphere. The Interstellar Probe mission is an ideal opportunity for measurement either along a trajectory passing through the heliotail, via the flank, or by use of a pair of spacecraft that explore the heliosphere both tailward and noseward to yield a more complete picture of the shape of the heliosphere and to help us better understand its interactions with the LISM.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"5 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1163519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heliosphere is a protective shield around the solar system created by the Sun’s interaction with the local interstellar medium (LISM) through the solar wind, transients, and interplanetary magnetic field. The shape of the heliosphere is directly linked with interactions with the surrounding LISM, in turn affecting the space environment within the heliosphere. Understanding the shape of the heliosphere, the LISM properties, and their interactions is critical for understanding the impacts within the solar system and for understanding other astrospheres. Understanding the shape of the heliosphere requires an understanding of the heliotail, as the shape is highly dependent upon the heliotail and its LISM interactions. The heliotail additionally presents an opportunity for more direct in situ measurement of interstellar particles from within the heliosphere, given the likelihood of magnetic reconnection and turbulent mixing between the LISM and the heliotail. Measurements in the heliotail should be made of pickup ions, energetic neutral atoms, low energy neutrals, and cosmic rays, as well as interstellar ions that may be injected into the heliosphere through processes such as magnetic reconnection, which can create a direct magnetic link from the LISM into the heliosphere. The Interstellar Probe mission is an ideal opportunity for measurement either along a trajectory passing through the heliotail, via the flank, or by use of a pair of spacecraft that explore the heliosphere both tailward and noseward to yield a more complete picture of the shape of the heliosphere and to help us better understand its interactions with the LISM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自日冕星尾的星际互补探测
日光层是太阳通过太阳风、瞬变和行星际磁场与当地星际介质(LISM)相互作用在太阳系周围形成的保护罩。日光层的形状与周围星际介质的相互作用直接相关,进而影响日光层内的空间环境。了解日光层的形状、LISM 的特性及其相互作用对于了解太阳系内部的影响和了解其他天球至关重要。要了解日光层的形状,就必须了解日珥尾,因为日光层的形状在很大程度上取决于日珥尾及其 LISM 的相互作用。此外,考虑到 LISM 和日珥尾之间可能发生磁重联和湍流混合,日珥尾还为从日光层内部更直接地测量星际粒子提供了机会。应在日冕尾部测量拾取离子、高能中性原子、低能中性粒子和宇宙射线,以及可能通过磁重联等过程注入日光层的星际离子。星际探测器任务是一个理想的测量机会,它可以沿着穿过日光层尾部的轨迹,通过侧面进行测量,或者使用一对航天器,从尾部和头部对日光层进行探测,从而更全面地了解日光层的形状,帮助我们更好地了解日光层与低辐射层之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a W UMa-type contact binary GZ And in a physical triple system Probing turbulence in solar flares from SDO/AIA emission lines Dependence of daytime thermospheric winds on IMF By as measured from south pole Numerical model of the QiTai radio Telescope PAF receiver signal and simulation of interference mitigation Research on identification of nucleus-shaped anomaly regions in space electric field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1