CH4/air combustion in a microscale recirculating heat exchanger: Sizing design using the heat transfer approach

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-02-02 DOI:10.1002/htj.23019
Sooraj Mohan, P. Dinesha, Marc A. Rosen
{"title":"CH4/air combustion in a microscale recirculating heat exchanger: Sizing design using the heat transfer approach","authors":"Sooraj Mohan,&nbsp;P. Dinesha,&nbsp;Marc A. Rosen","doi":"10.1002/htj.23019","DOIUrl":null,"url":null,"abstract":"<p>Microcombustors are microscale combustion devices that can be used to power microelectromechanical systems. Many combustor configurations are reported in the literature and, among them, combustion in a microscale recirculating heat exchanger is a feasible option. In this work, a simple, double-channel, recirculating heat exchanger is considered. The novelty of the present work lies in the heat transfer analysis approach to design a microcombustor. A combustor is designed using thermal resistance networks for a premixed fuel containing a methane–air mixture in stoichiometric ratio. The length of the combustor is designed based on the position of the combustion flame. Computational fluid dynamics is utilized to validate the theoretical results. The analysis is carried out for adiabatic and nonadiabatic conditions. The combustor lengths for adiabatic and nonadiabatic (ceramic) combustors vary from 39 to 242 mm and 49 to 276 mm, respectively, for variations in the mass flow rate of the premixed gases from 6 to 10 mg/s. A minimum limiting flow rate of 6 mg/s was identified. The average error in the maximum combustion gas temperatures between the theoretical and CFD results obtained in this work is 4.2%. The theoretical approach presented can be suitably applied to more complex geometries involving multichannels and variations in geometrical properties.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/htj.23019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Microcombustors are microscale combustion devices that can be used to power microelectromechanical systems. Many combustor configurations are reported in the literature and, among them, combustion in a microscale recirculating heat exchanger is a feasible option. In this work, a simple, double-channel, recirculating heat exchanger is considered. The novelty of the present work lies in the heat transfer analysis approach to design a microcombustor. A combustor is designed using thermal resistance networks for a premixed fuel containing a methane–air mixture in stoichiometric ratio. The length of the combustor is designed based on the position of the combustion flame. Computational fluid dynamics is utilized to validate the theoretical results. The analysis is carried out for adiabatic and nonadiabatic conditions. The combustor lengths for adiabatic and nonadiabatic (ceramic) combustors vary from 39 to 242 mm and 49 to 276 mm, respectively, for variations in the mass flow rate of the premixed gases from 6 to 10 mg/s. A minimum limiting flow rate of 6 mg/s was identified. The average error in the maximum combustion gas temperatures between the theoretical and CFD results obtained in this work is 4.2%. The theoretical approach presented can be suitably applied to more complex geometries involving multichannels and variations in geometrical properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微型循环热交换器中的甲烷/空气燃烧:利用传热方法进行选型设计
微型燃烧器是一种微型燃烧装置,可用于为微型机电系统提供动力。文献中报道了许多燃烧器配置,其中在微型循环热交换器中燃烧是一种可行的选择。本研究考虑了一种简单的双通道循环热交换器。本研究的新颖之处在于设计微型燃烧器的传热分析方法。我们利用热阻网络设计了一个燃烧器,该燃烧器使用的预混合燃料含有甲烷-空气混合物,其比例为化学计量比。燃烧器的长度是根据燃烧火焰的位置设计的。计算流体动力学被用来验证理论结果。分析针对绝热和非绝热条件进行。绝热和非绝热(陶瓷)燃烧器的长度分别为 39 至 242 毫米和 49 至 276 毫米,预混气体的质量流量变化范围为 6 至 10 毫克/秒。最小限制流量为 6 毫克/秒。这项工作中获得的理论和 CFD 结果之间的最大燃烧气体温度平均误差为 4.2%。所提出的理论方法可适用于涉及多通道和几何特性变化的更复杂几何结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Characteristics of thermo‐hydraulic flow inside corrugated channels: Comprehensive and comparative review Unsteady flow past an impulsively started infinite vertical plate in presence of thermal stratification and chemical reaction A comparison between Hankel and Fourier methods for photothermal radiometry analysis Recent advancements in flow control using plasma actuators and plasma vortex generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1