Game-theoretic private blockchain design in edge computing networks

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2024-12-01 DOI:10.1016/j.dcan.2023.12.001
Daoqi Han , Yang Liu , Fangwei Zhang , Yueming Lu
{"title":"Game-theoretic private blockchain design in edge computing networks","authors":"Daoqi Han ,&nbsp;Yang Liu ,&nbsp;Fangwei Zhang ,&nbsp;Yueming Lu","doi":"10.1016/j.dcan.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the privacy challenges of secure storage and controlled flow, there is an urgent need to realize a decentralized ecosystem of private blockchain for cyberspace. A collaboration dilemma arises when the participants are self-interested and lack feedback of complete information. Traditional blockchains have similar faults, such as trustlessness, single-factor consensus, and heavily distributed ledger, preventing them from adapting to the heterogeneous and resource-constrained Internet of Things. In this paper, we develop the game-theoretic design of a two-sided rating with complete information feedback to stimulate collaborations for private blockchain. The design consists of an evolution strategy of the decision-making network and a computing power network for continuously verifiable proofs. We formulate the optimum rating and resource scheduling problems as two-stage iterative games between participants and leaders. We theoretically prove that the Stackelberg equilibrium exists and the group evolution is stable. Then, we propose a multi-stage evolution consensus with feedback on a block-accounting workload for metadata survival. To continuously validate a block, the metadata of the optimum rating, privacy, and proofs are extracted to store on a lightweight blockchain. Moreover, to increase resource utilization, surplus computing power is scheduled flexibly to enhance security by degrees. Finally, the evaluation results show the validity and efficiency of our model, thereby solving the collaboration dilemma in the private blockchain.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1622-1634"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001785","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the privacy challenges of secure storage and controlled flow, there is an urgent need to realize a decentralized ecosystem of private blockchain for cyberspace. A collaboration dilemma arises when the participants are self-interested and lack feedback of complete information. Traditional blockchains have similar faults, such as trustlessness, single-factor consensus, and heavily distributed ledger, preventing them from adapting to the heterogeneous and resource-constrained Internet of Things. In this paper, we develop the game-theoretic design of a two-sided rating with complete information feedback to stimulate collaborations for private blockchain. The design consists of an evolution strategy of the decision-making network and a computing power network for continuously verifiable proofs. We formulate the optimum rating and resource scheduling problems as two-stage iterative games between participants and leaders. We theoretically prove that the Stackelberg equilibrium exists and the group evolution is stable. Then, we propose a multi-stage evolution consensus with feedback on a block-accounting workload for metadata survival. To continuously validate a block, the metadata of the optimum rating, privacy, and proofs are extracted to store on a lightweight blockchain. Moreover, to increase resource utilization, surplus computing power is scheduled flexibly to enhance security by degrees. Finally, the evaluation results show the validity and efficiency of our model, thereby solving the collaboration dilemma in the private blockchain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘计算网络中的博弈论私有区块链设计
考虑到安全存储和控制流量对隐私的挑战,迫切需要实现一个分散的网络空间私有区块链生态系统。当参与者是自利的并且缺乏完整信息的反馈时,就会出现协作困境。传统区块链也存在类似的缺陷,如缺乏信任、单因素共识、分布式账本严重等,使其无法适应异构和资源约束的物联网。在本文中,我们发展了一个具有完全信息反馈的双边评级的博弈论设计,以刺激私人b区块链的合作。该设计包括决策网络的进化策略和连续可验证证明的计算能力网络。我们将最优评级和资源调度问题表述为参与者和领导者之间的两阶段迭代博弈。从理论上证明了Stackelberg平衡的存在和群体进化是稳定的。然后,我们提出了一种多阶段进化共识,并对元数据生存的块会计工作负载进行了反馈。为了持续验证一个块,将提取最佳评级、隐私和证明的元数据存储在轻量级区块链上。此外,为了提高资源利用率,可以灵活调度多余的计算能力,以逐步提高安全性。最后,评价结果表明了模型的有效性和有效性,从而解决了私人b区块链中的协作困境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
A blockchain-based user-centric identity management toward 6G networks Editorial Board Cross-domain resources optimization for hybrid edge computing networks: Federated DRL approach Radio map estimation using a CycleGAN-based learning framework for 6G wireless communication Autonomous network management for 6G communication: A comprehensive survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1