Study on Rock Mechanics Parameter Prediction Method Based on DTW Similarity and Machine-Learning Algorithms

Wenjun Cai, Jianqi Ding, Zhong Li, Zhiming Yin, Yongcun Feng
{"title":"Study on Rock Mechanics Parameter Prediction Method Based on DTW Similarity and Machine-Learning Algorithms","authors":"Wenjun Cai, Jianqi Ding, Zhong Li, Zhiming Yin, Yongcun Feng","doi":"10.30632/pjv65n1-2024a7","DOIUrl":null,"url":null,"abstract":"Rock mechanics parameters are crucial factors for predicting rock behavior in oil and gas reservoirs, optimizing extraction strategies, and ensuring drilling safety. In this study, we propose a random forest (RF)-convolutional neural network (CNN)-long-term short-term memory network (LSTM) fusion model based on the dynamic time warping (DTW) algorithm to construct intelligent prediction models for elastic modulus, Poisson’s ratio, and compressive strength using real-time drilling engineering data. An autoencoder with a sliding window is employed to automatically identify abnormal points or segments in the calculated values of elastic modulus, Poisson’s ratio, and compressive strength obtained from drilled wells. These abnormal values are then corrected using a backpropagation (BP) neural network. Compared to single CNN-LSTM or single RF models, the RF-CNN-LSTM fusion model performs better. It achieves this by effectively combining the strengths of different algorithms in predicting outcomes. The accuracy of the RF-CNN-LSTM fusion model is over 94% when compared to the actual values. Furthermore, the analysis of the relative importance of input parameters reveals that weight on bit (WOB), temperature, displacement, equivalent circulation density (ECD), and mud density are the primary input features for predicting elastic modulus. For predicting Poisson’s ratio, the main input features include WOB, mud density, ECD, temperature, pumping pressure, displacement, and rate of penetration (ROP). Similarly, for predicting compressive strength, the main input features consist of WOB, temperature, displacement, ECD, and mud density. The research findings demonstrate that the rock mechanics parameter prediction models based on the RF-CNN-LSTM algorithm using DTW exhibit high computational accuracy in the B oil field of China. These results are significant for gaining a deeper understanding of the variations in rock mechanics parameters and optimizing drilling decisions.","PeriodicalId":170688,"journal":{"name":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","volume":"23 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/pjv65n1-2024a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rock mechanics parameters are crucial factors for predicting rock behavior in oil and gas reservoirs, optimizing extraction strategies, and ensuring drilling safety. In this study, we propose a random forest (RF)-convolutional neural network (CNN)-long-term short-term memory network (LSTM) fusion model based on the dynamic time warping (DTW) algorithm to construct intelligent prediction models for elastic modulus, Poisson’s ratio, and compressive strength using real-time drilling engineering data. An autoencoder with a sliding window is employed to automatically identify abnormal points or segments in the calculated values of elastic modulus, Poisson’s ratio, and compressive strength obtained from drilled wells. These abnormal values are then corrected using a backpropagation (BP) neural network. Compared to single CNN-LSTM or single RF models, the RF-CNN-LSTM fusion model performs better. It achieves this by effectively combining the strengths of different algorithms in predicting outcomes. The accuracy of the RF-CNN-LSTM fusion model is over 94% when compared to the actual values. Furthermore, the analysis of the relative importance of input parameters reveals that weight on bit (WOB), temperature, displacement, equivalent circulation density (ECD), and mud density are the primary input features for predicting elastic modulus. For predicting Poisson’s ratio, the main input features include WOB, mud density, ECD, temperature, pumping pressure, displacement, and rate of penetration (ROP). Similarly, for predicting compressive strength, the main input features consist of WOB, temperature, displacement, ECD, and mud density. The research findings demonstrate that the rock mechanics parameter prediction models based on the RF-CNN-LSTM algorithm using DTW exhibit high computational accuracy in the B oil field of China. These results are significant for gaining a deeper understanding of the variations in rock mechanics parameters and optimizing drilling decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 DTW 相似性和机器学习算法的岩石力学参数预测方法研究
岩石力学参数是预测油气藏岩石行为、优化开采策略和确保钻井安全的关键因素。在本研究中,我们提出了一种基于动态时间扭曲(DTW)算法的随机森林(RF)-卷积神经网络(CNN)-长期短期记忆网络(LSTM)融合模型,利用实时钻井工程数据构建弹性模量、泊松比和抗压强度的智能预测模型。采用滑动窗口自动编码器自动识别从钻井中获得的弹性模量、泊松比和抗压强度计算值中的异常点或段。然后使用反向传播 (BP) 神经网络修正这些异常值。与单一的 CNN-LSTM 模型或单一的 RF 模型相比,RF-CNN-LSTM 融合模型的性能更好。它通过有效结合不同算法在预测结果方面的优势来实现这一目标。与实际值相比,RF-CNN-LSTM 融合模型的准确率超过 94%。此外,对输入参数相对重要性的分析表明,钻头重量(WOB)、温度、位移、等效循环密度(ECD)和泥浆密度是预测弹性模量的主要输入特征。在预测泊松比时,主要输入参数包括钻头重量、泥浆密度、等效循环密度(ECD)、温度、泵压、位移和渗透率(ROP)。同样,预测抗压强度的主要输入特征包括 WOB、温度、位移、ECD 和泥浆密度。研究结果表明,基于使用 DTW 的 RF-CNN-LSTM 算法的岩石力学参数预测模型在中国 B 油田表现出较高的计算精度。这些结果对于深入了解岩石力学参数的变化和优化钻井决策具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Geological Facies Analysis in Crust-Mantle Transition Zone Petrophysical Analyses for Supporting the Search for a Claystone-Hosted Nuclear Repository A New R35 and Fractal Joint Rock Typing Method Using MICP Analysis: A Case Study in Middle East Iraq Nuclear Logging in Geological Probing for a Low-Carbon Energy Future – A New Frontier? Underground Hydrogen Storage in Porous Media: The Potential Role of Petrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1