Optimal sensitivity for 1H detected relayed DNP of organic solids at fast MAS

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Journal of magnetic resonance Pub Date : 2024-02-14 DOI:10.1016/j.jmr.2024.107645
Saumya Badoni, Pierrick Berruyer, Lyndon Emsley
{"title":"Optimal sensitivity for 1H detected relayed DNP of organic solids at fast MAS","authors":"Saumya Badoni,&nbsp;Pierrick Berruyer,&nbsp;Lyndon Emsley","doi":"10.1016/j.jmr.2024.107645","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic nuclear polarization (DNP) combined with high magnetic fields and fast magic angle spinning (MAS) has opened up a new avenue for the application of exceptionally sensitive <sup>1</sup>H NMR detection schemes to study protonated solids. Recently, it has been shown that DNP experiments at fast MAS rates lead to slower spin diffusion and hence reduced DNP enhancements for impregnated materials. However, DNP enhancements alone do not determine the overall sensitivity of a NMR experiment. Here we measure the overall sensitivity of one-dimensional <sup>1</sup>H detected relayed DNP experiments as a function of the MAS rate in the 20–60 kHz regime using 0.7 mm diameter rotors at 21.2 T. Although faster MAS rates are detrimental for the DNP enhancement on the target material, due to slower spin diffusion, we find that with increasing spinning rates the gain in sensitivity due to <sup>1</sup>H line-narrowing and the folding-in of sideband intensity compensates a large part of the loss of overall hyperpolarization. We find that sensitivity depends on the atomic site in the molecule, and is maximised at between 40 and 50 kHz MAS for the sample of L-histidine.HCl·H<sub>2</sub>O studied here. There is a 10–20 % difference in sensitivity between the optimum MAS rate and the fastest rate currently accessible (60 kHz).</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107645"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724000296/pdfft?md5=86b4aa7ef4e5cbee186d80a61dde79b0&pid=1-s2.0-S1090780724000296-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000296","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic nuclear polarization (DNP) combined with high magnetic fields and fast magic angle spinning (MAS) has opened up a new avenue for the application of exceptionally sensitive 1H NMR detection schemes to study protonated solids. Recently, it has been shown that DNP experiments at fast MAS rates lead to slower spin diffusion and hence reduced DNP enhancements for impregnated materials. However, DNP enhancements alone do not determine the overall sensitivity of a NMR experiment. Here we measure the overall sensitivity of one-dimensional 1H detected relayed DNP experiments as a function of the MAS rate in the 20–60 kHz regime using 0.7 mm diameter rotors at 21.2 T. Although faster MAS rates are detrimental for the DNP enhancement on the target material, due to slower spin diffusion, we find that with increasing spinning rates the gain in sensitivity due to 1H line-narrowing and the folding-in of sideband intensity compensates a large part of the loss of overall hyperpolarization. We find that sensitivity depends on the atomic site in the molecule, and is maximised at between 40 and 50 kHz MAS for the sample of L-histidine.HCl·H2O studied here. There is a 10–20 % difference in sensitivity between the optimum MAS rate and the fastest rate currently accessible (60 kHz).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速 MAS 条件下有机固体 1H 检测中继 DNP 的最佳灵敏度
动态核极化(DNP)与高磁场和快速魔角旋转(MAS)相结合,为应用异常灵敏的 1H NMR 检测方案研究质子化固体开辟了一条新途径。最近的研究表明,在快速 MAS 速率下进行 DNP 实验会导致自旋扩散速度减慢,从而降低浸渍材料的 DNP 增强。然而,DNP 增强本身并不能决定 NMR 实验的整体灵敏度。虽然由于自旋扩散较慢,较快的 MAS 速率不利于目标材料上的 DNP 增强,但我们发现,随着旋转速率的增加,1H 线窄和边带强度折叠所带来的灵敏度增益弥补了整体超极化的大部分损失。我们发现灵敏度取决于分子中的原子位点,在本文研究的 L-histidine.HCl-H2O 样品中,灵敏度在 40 至 50 kHz MAS 之间达到最大。最佳 MAS 速率与目前可用的最快速率(60 kHz)之间的灵敏度相差 10-20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
期刊最新文献
Changing the resonant nucleus by altering the static field, compensation of γ and B0 effects in T2 and T2* measurements of porous media A compact and mobile stray-field NMR sensor Eliminating electromagnetic interference for RF shielding-free MRI via k-space convolution: Insights from MR parallel imaging advances Optimizing EPR pulses for broadband excitation and refocusing Proton hyperfine couplings and Overhauser DNP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1