CLUSTERING DATA METEOROLOGI WILAYAH INDONESIA TIMUR DENGAN METODE K-MEANS DAN FUZZY C-MEANS

Gion Andrian, Desi Arisandi, Teny Handhayani
{"title":"CLUSTERING DATA METEOROLOGI WILAYAH INDONESIA TIMUR DENGAN METODE K-MEANS DAN FUZZY C-MEANS","authors":"Gion Andrian, Desi Arisandi, Teny Handhayani","doi":"10.33480/inti.v18i2.5039","DOIUrl":null,"url":null,"abstract":"Climate change is a global issue that affect human life and the environment. Signs of climate change can be observed from long-term meteorological data.  This research uses clustering techniques with the K-Means and Fuzzy C-Means methods to group cities in the Eastern Indonesia region based on numerical daily time series meteorological data from 1 January 2010 to 31 August 2023. The variables are minimum temperature, maximum temperature, temperature average, humidity, rainfall, duration of sunlight, maximum wind speed, and average wind speed. The dataset was collected from 28 meteorological stations. The K-Means and Fuzzy C-Means methods obtained the same results, namely the highest silhouette value of 0.218 with the number of clusters k = 2. In general, the annual trend shows an increase in temperature and a decrease in wind speed which are signs of climate change. This research is an early study of climate change in East Indonesia. The results of this research are expected to contribute to the study of climate change in Indonesia.","PeriodicalId":197142,"journal":{"name":"INTI Nusa Mandiri","volume":"50 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTI Nusa Mandiri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33480/inti.v18i2.5039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is a global issue that affect human life and the environment. Signs of climate change can be observed from long-term meteorological data.  This research uses clustering techniques with the K-Means and Fuzzy C-Means methods to group cities in the Eastern Indonesia region based on numerical daily time series meteorological data from 1 January 2010 to 31 August 2023. The variables are minimum temperature, maximum temperature, temperature average, humidity, rainfall, duration of sunlight, maximum wind speed, and average wind speed. The dataset was collected from 28 meteorological stations. The K-Means and Fuzzy C-Means methods obtained the same results, namely the highest silhouette value of 0.218 with the number of clusters k = 2. In general, the annual trend shows an increase in temperature and a decrease in wind speed which are signs of climate change. This research is an early study of climate change in East Indonesia. The results of this research are expected to contribute to the study of climate change in Indonesia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 K-均值法和模糊 C-均值法对印尼东部的气象数据进行聚类
气候变化是一个影响人类生活和环境的全球性问题。气候变化的迹象可以从长期气象数据中观察到。 本研究使用 K-Means 和 Fuzzy C-Means 聚类技术,根据 2010 年 1 月 1 日至 2023 年 8 月 31 日的每日时间序列气象数据,对印度尼西亚东部地区的城市进行分组。变量包括最低气温、最高气温、平均气温、湿度、降雨量、日照时间、最大风速和平均风速。数据集从 28 个气象站收集而来。K-Means 和模糊 C-Means 方法得到了相同的结果,即在聚类数 k = 2 的情况下,剪影值最高,为 0.218。总体而言,年度趋势显示气温上升,风速下降,这是气候变化的迹象。这项研究是对印度尼西亚东部气候变化的早期研究。本研究的结果有望为印度尼西亚的气候变化研究做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENERAPAN METODE ASOSIASI PADA ANALISA POLA PEMINJAMAN BUKU PERPUSTAKAAN PENERAPAN MODEL WATERFALL DALAM PERANCANGAN APLIKASI DIGITAL CUSTOMER RELATIONSHIP MANAGEMENT PRODUK FASHION OPTIMASI KINERJA LINEAR REGRESSION, RANDOM FOREST REGRESSION DAN MULTILAYER PERCEPTRON PADA PREDIKSI HASIL PANEN OPTIMASI KINERJA LINEAR REGRESSION, RANDOM FOREST REGRESSION DAN MULTILAYER PERCEPTRON PADA PREDIKSI HASIL PANEN PENERAPAN K-MEANS DAN K-MEDOIDS BERBASIS RFM PADA SEGMENTASI PELANGGAN DI MASA PANDEMI COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1