Methylocystis dominates methane oxidation in glacier foreland soil at elevated temperature.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY Fems Microbiology Letters Pub Date : 2024-01-09 DOI:10.1093/femsle/fnae011
Xinshu Zhu, Yongcui Deng, Yongqin Liu
{"title":"Methylocystis dominates methane oxidation in glacier foreland soil at elevated temperature.","authors":"Xinshu Zhu, Yongcui Deng, Yongqin Liu","doi":"10.1093/femsle/fnae011","DOIUrl":null,"url":null,"abstract":"<p><p>Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在温度升高的情况下,冰川前缘土壤中的甲基胞囊菌主导甲烷氧化作用。
在包括寒冷地区在内的各种生态环境中,甲烷氧化细菌(甲烷营养菌)在减少甲烷排放方面发挥着重要作用。然而,这些寒冷环境中的甲烷营养菌对高于原位温度的极端温度的反应尚未得到深入探讨。因此,本研究采集了龙厦扎龙坝(LXZ)和羌勇(QY)冰川前缘的土壤样本,并在不同的土壤水条件下于 35°C 温度下用 13CH4 进行培养。利用 DNA 稳定同位素探针(DNA-SIP)和高通量测序技术对活跃的甲烷营养群进行了鉴定。结果表明,在提供丰富底物(甲烷和氧气)的小宇宙培养过程中,LXZ 和 QY 冰川前缘土壤在 35°C 的异常高温下甲烷氧化潜能显著增强。此外,还观察到土壤水分条件对这一潜力的影响。有趣的是,在未培养的原位土壤样本中检测到了第二类嗜中性甲烷菌--甲基胞囊菌,并在 35°C 的甲烷氧化过程中成为活跃的主要甲烷菌。这表明,甲基胞囊菌可以在低温条件下长期存活,并在适宜的生长条件下茁壮成长。此外,在寒冷的生境中存在嗜中性甲烷营养体可能对减少变暖的冰川环境中的温室气体排放有潜在的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
期刊最新文献
Genome-based analysis of biosynthetic potential from antimycotic Streptomyces rochei strain A144. Menaquinone production in genetically engineered E. coli. Origin tracking of Brucella strain B. melitensis bv.3 ARQ-070 using biochemical and genomic studies. The pangenome analysis of the environmental source Salmonella enterica highlights a diverse accessory genome and a distinct serotype clustering. Imipenem exposure influence the expression of quorum sensing receptor sdiA in Escherichia coli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1