Fabian Krutzek, Cornelius K. Donat, Sven Stadlbauer
{"title":"Chelator impact: investigating the pharmacokinetic behavior of copper-64 labeled PD-L1 radioligands","authors":"Fabian Krutzek, Cornelius K. Donat, Sven Stadlbauer","doi":"10.1186/s41181-024-00243-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Programmed cell death ligand 1 (PD-L1) plays a critical role in the tumor microenvironment and overexpression in several solid cancers has been reported. This was associated with a downregulation of the local immune response, specifically of T-cells. Immune checkpoint inhibitors showed a potential to break this localized immune paralysis, but only 30% of patients are considered responders. New diagnostic approaches are therefore needed to determine patient eligibility. Small molecule radiotracers targeting PD-L1, may serve as such diagnostic tools, addressing the heterogeneous PD-L1 expression between and within tumor lesions, thus aiding in therapy decisions.</p><h3>Results</h3><p>Four biphenyl-based small-molecule PD-L1 ligands were synthesized using a convergent synthetic route with a linear sequence of up to eleven steps. As a chelator NODA-GA, CB-TE2A or DiAmSar was used to allow radiolabeling with copper-64 ([<sup>64</sup>Cu]Cu-<b>14</b>–[<sup>64</sup>Cu]Cu-<b>16</b>). In addition, a dimeric structure based on DiAmSar was synthesized ([<sup>64</sup>Cu]Cu-<b>17</b>). All four radioligands exhibited high proteolytic stability (> 95%) up to 48 h post-radiolabeling. Saturation binding yielded moderate affinities toward PD-L1, ranging from 100 to 265 nM. Real-time radioligand binding provided more promising <i>K</i><sub>D</sub> values around 20 nM for [<sup>64</sup>Cu]Cu-<b>14</b> and [<sup>64</sup>Cu]Cu-<b>15</b>. In vivo PET imaging in mice bearing both PC3 PD-L1 overexpressing and PD-L1-mock tumors was performed at 0–2, 4–5 and 24–25 h post injection (p.i.). This revealed considerably different pharmacokinetic profiles, depending on the substituted chelator. [<sup>64</sup>Cu]Cu-<b>14</b>, substituted with NODA-GA, showed renal clearance with low liver uptake, whereas substitution with the cross-bridged cyclam chelator CB-TE2A resulted in a primarily hepatobiliary clearance. Notably, the monomeric DiAmSar radioligand [<sup>64</sup>Cu]Cu-<b>16</b> demonstrated a higher liver uptake than [<sup>64</sup>Cu]Cu-<b>15</b>, but was still renally cleared as evidenced by the lack of uptake in gall bladder and intestines. The dimeric structure [<sup>64</sup>Cu]Cu-<b>17</b> showed extensive accumulation and trapping in the liver but was also cleared via the renal pathway. Of all tracer candidates and across all timepoints, [<sup>64</sup>Cu]Cu-<b>17</b> showed the highest accumulation at 24 h p.i. in the PD-L1-overexpressing tumor of all timepoints and all radiotracers, indicating drastically increased circulation time upon dimerization of two PD-L1 binding motifs.</p><h3>Conclusions</h3><p>This study shows that chelator choice significantly influences the pharmacokinetic profile of biphenyl-based small molecule PD-L1 radioligands. The NODA-GA-conjugated radioligand [<sup>64</sup>Cu]Cu-<b>14</b> exhibited favorable renal clearance; however, the limited uptake in tumors suggests the need for structural modifications to the binding motif for future PD-L1 radiotracers.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00243-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00243-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Programmed cell death ligand 1 (PD-L1) plays a critical role in the tumor microenvironment and overexpression in several solid cancers has been reported. This was associated with a downregulation of the local immune response, specifically of T-cells. Immune checkpoint inhibitors showed a potential to break this localized immune paralysis, but only 30% of patients are considered responders. New diagnostic approaches are therefore needed to determine patient eligibility. Small molecule radiotracers targeting PD-L1, may serve as such diagnostic tools, addressing the heterogeneous PD-L1 expression between and within tumor lesions, thus aiding in therapy decisions.
Results
Four biphenyl-based small-molecule PD-L1 ligands were synthesized using a convergent synthetic route with a linear sequence of up to eleven steps. As a chelator NODA-GA, CB-TE2A or DiAmSar was used to allow radiolabeling with copper-64 ([64Cu]Cu-14–[64Cu]Cu-16). In addition, a dimeric structure based on DiAmSar was synthesized ([64Cu]Cu-17). All four radioligands exhibited high proteolytic stability (> 95%) up to 48 h post-radiolabeling. Saturation binding yielded moderate affinities toward PD-L1, ranging from 100 to 265 nM. Real-time radioligand binding provided more promising KD values around 20 nM for [64Cu]Cu-14 and [64Cu]Cu-15. In vivo PET imaging in mice bearing both PC3 PD-L1 overexpressing and PD-L1-mock tumors was performed at 0–2, 4–5 and 24–25 h post injection (p.i.). This revealed considerably different pharmacokinetic profiles, depending on the substituted chelator. [64Cu]Cu-14, substituted with NODA-GA, showed renal clearance with low liver uptake, whereas substitution with the cross-bridged cyclam chelator CB-TE2A resulted in a primarily hepatobiliary clearance. Notably, the monomeric DiAmSar radioligand [64Cu]Cu-16 demonstrated a higher liver uptake than [64Cu]Cu-15, but was still renally cleared as evidenced by the lack of uptake in gall bladder and intestines. The dimeric structure [64Cu]Cu-17 showed extensive accumulation and trapping in the liver but was also cleared via the renal pathway. Of all tracer candidates and across all timepoints, [64Cu]Cu-17 showed the highest accumulation at 24 h p.i. in the PD-L1-overexpressing tumor of all timepoints and all radiotracers, indicating drastically increased circulation time upon dimerization of two PD-L1 binding motifs.
Conclusions
This study shows that chelator choice significantly influences the pharmacokinetic profile of biphenyl-based small molecule PD-L1 radioligands. The NODA-GA-conjugated radioligand [64Cu]Cu-14 exhibited favorable renal clearance; however, the limited uptake in tumors suggests the need for structural modifications to the binding motif for future PD-L1 radiotracers.