Kanokporn Noy Rithidech, Tanat Peanlikhit, Louise Honikel, Jinyu Li, Jingxuan Liu, Tobias Karakach, Thomas Zimmerman, James Welsh
{"title":"Consumption of Apigenin Prevents Radiation-induced Gut Dysbiosis in Male C57BL/6J Mice Exposed to Silicon Ions.","authors":"Kanokporn Noy Rithidech, Tanat Peanlikhit, Louise Honikel, Jinyu Li, Jingxuan Liu, Tobias Karakach, Thomas Zimmerman, James Welsh","doi":"10.1667/RADE-23-00110.1","DOIUrl":null,"url":null,"abstract":"<p><p>The search for medical treatments to prevent radiation-induced damage to gastrointestinal tissue is crucial as such injuries can be fatal. This study aimed to investigate the effects of apigenin (AP) on the gut microbiome of irradiated mice, as it is a promising radiation countermeasure. Male C57BL/6J mice were divided into four groups, with six mice in each group. Two groups were given food with apigenin (20 mg/kg body weight or AP 20) before and after exposure to 0 or 50 cGy of silicon (28Si) ions, while another two groups of mice received regular diet without apigenin (0 mg/kg body weight or AP 0) before and after irradiation. The duodenum, the primary site for oral AP absorption, was collected from each mouse seven days after radiation exposure. Using 16S rRNA amplicon sequencing, we found significant differences in microbial diversity among groups. Firmicutes and Bacteroidetes were the major phyla for all groups, while actinobacterial and proteobacterial sequences represented only a small percentage. Mice not given dietary apigenin had a higher Firmicutes and Bacteroidetes (F/B) ratio and an imbalanced duodenal microbiota after exposure to radiation, while irradiated mice given apigenin had maintained homeostasis of the microbiota. Additionally, irradiated mice not given apigenin had decreased probiotic bacteria abundance and increased inflammation, while apigenin-supplemented mice had reduced inflammation and restored normal histological structure. In conclusion, our results demonstrate the potential of dietary apigenin as a countermeasure against radiation-induced gut injuries due to its anti-inflammatory activity, reduction of gut microbiota dysbiosis, and increase in probiotic bacteria (e.g., Lachnospiraceae, Muribaculaceae and Bifidobacteriaceae).</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"317-329"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-23-00110.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The search for medical treatments to prevent radiation-induced damage to gastrointestinal tissue is crucial as such injuries can be fatal. This study aimed to investigate the effects of apigenin (AP) on the gut microbiome of irradiated mice, as it is a promising radiation countermeasure. Male C57BL/6J mice were divided into four groups, with six mice in each group. Two groups were given food with apigenin (20 mg/kg body weight or AP 20) before and after exposure to 0 or 50 cGy of silicon (28Si) ions, while another two groups of mice received regular diet without apigenin (0 mg/kg body weight or AP 0) before and after irradiation. The duodenum, the primary site for oral AP absorption, was collected from each mouse seven days after radiation exposure. Using 16S rRNA amplicon sequencing, we found significant differences in microbial diversity among groups. Firmicutes and Bacteroidetes were the major phyla for all groups, while actinobacterial and proteobacterial sequences represented only a small percentage. Mice not given dietary apigenin had a higher Firmicutes and Bacteroidetes (F/B) ratio and an imbalanced duodenal microbiota after exposure to radiation, while irradiated mice given apigenin had maintained homeostasis of the microbiota. Additionally, irradiated mice not given apigenin had decreased probiotic bacteria abundance and increased inflammation, while apigenin-supplemented mice had reduced inflammation and restored normal histological structure. In conclusion, our results demonstrate the potential of dietary apigenin as a countermeasure against radiation-induced gut injuries due to its anti-inflammatory activity, reduction of gut microbiota dysbiosis, and increase in probiotic bacteria (e.g., Lachnospiraceae, Muribaculaceae and Bifidobacteriaceae).
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.