Reduced Order Model Enhanced Source Iteration with Synthetic Acceleration for Parametric Radiative Transfer Equation

Zhichao Peng
{"title":"Reduced Order Model Enhanced Source Iteration with Synthetic Acceleration for Parametric Radiative Transfer Equation","authors":"Zhichao Peng","doi":"arxiv-2402.10488","DOIUrl":null,"url":null,"abstract":"Applications such as uncertainty quantification and optical tomography,\nrequire solving the radiative transfer equation (RTE) many times for various\nparameters. Efficient solvers for RTE are highly desired. Source Iteration with Synthetic Acceleration (SISA) is one of the most\npopular and successful iterative solvers for RTE. Synthetic Acceleration (SA)\nacts as a preconditioning step to accelerate the convergence of Source\nIteration (SI). After each source iteration, classical SA strategies introduce\na correction to the macroscopic particle density by solving a low order\napproximation to a kinetic correction equation. For example, Diffusion\nSynthetic Acceleration (DSA) uses the diffusion limit. However, these\nstrategies may become less effective when the underlying low order\napproximations are not accurate enough. Furthermore, they do not exploit low\nrank structures concerning the parameters of parametric problems. To address these issues, we propose enhancing SISA with data-driven ROMs for\nthe parametric problem and the corresponding kinetic correction equation.\nFirst, the ROM for the parametric problem can be utilized to obtain an improved\ninitial guess. Second, the ROM for the kinetic correction equation can be\nutilized to design a low rank approximation to it. Unlike the diffusion limit,\nthis ROM-based approximation builds on the kinetic description of the\ncorrection equation and leverages low rank structures concerning the\nparameters. We further introduce a novel SA strategy called ROMSAD. ROMSAD\ninitially adopts our ROM-based approximation to exploit its greater efficiency\nin the early stage, and then automatically switches to DSA to leverage its\nrobustness in the later stage. Additionally, we propose an approach to\nconstruct the ROM for the kinetic correction equation without directly solving\nit.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"184 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.10488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Applications such as uncertainty quantification and optical tomography, require solving the radiative transfer equation (RTE) many times for various parameters. Efficient solvers for RTE are highly desired. Source Iteration with Synthetic Acceleration (SISA) is one of the most popular and successful iterative solvers for RTE. Synthetic Acceleration (SA) acts as a preconditioning step to accelerate the convergence of Source Iteration (SI). After each source iteration, classical SA strategies introduce a correction to the macroscopic particle density by solving a low order approximation to a kinetic correction equation. For example, Diffusion Synthetic Acceleration (DSA) uses the diffusion limit. However, these strategies may become less effective when the underlying low order approximations are not accurate enough. Furthermore, they do not exploit low rank structures concerning the parameters of parametric problems. To address these issues, we propose enhancing SISA with data-driven ROMs for the parametric problem and the corresponding kinetic correction equation. First, the ROM for the parametric problem can be utilized to obtain an improved initial guess. Second, the ROM for the kinetic correction equation can be utilized to design a low rank approximation to it. Unlike the diffusion limit, this ROM-based approximation builds on the kinetic description of the correction equation and leverages low rank structures concerning the parameters. We further introduce a novel SA strategy called ROMSAD. ROMSAD initially adopts our ROM-based approximation to exploit its greater efficiency in the early stage, and then automatically switches to DSA to leverage its robustness in the later stage. Additionally, we propose an approach to construct the ROM for the kinetic correction equation without directly solving it.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数辐射传输方程的减阶模型增强源迭代与合成加速度
不确定性量化和光学层析成像等应用需要多次求解各种参数的辐射传递方程(RTE)。我们非常需要高效的 RTE 求解器。带合成加速度的源迭代(SISA)是 RTE 最受欢迎和最成功的迭代求解器之一。合成加速(SA)是加速源迭代(SI)收敛的前提条件步骤。每次源迭代后,经典的合成加速策略都会通过求解动力学修正方程的低阶近似值,对宏观粒子密度进行修正。例如,扩散合成加速(DSA)使用扩散极限。然而,当底层低阶近似不够精确时,这些策略可能会变得不那么有效。此外,它们无法利用与参数问题参数有关的低阶结构。为了解决这些问题,我们建议使用数据驱动的参数问题 ROM 和相应的动力学修正方程来增强 SISA。其次,可以利用动力学修正方程的 ROM 来设计一个低阶近似值。与扩散极限不同的是,这种基于 ROM 的近似建立在对修正方程的动力学描述之上,并利用了与参数有关的低秩结构。我们进一步介绍了一种名为 ROMSAD 的新型 SA 策略。ROMSAD 最初采用我们基于 ROM 的近似方法,以便在早期阶段利用其更高的效率,然后自动切换到 DSA,以便在后期阶段利用其稳健性。此外,我们还提出了一种不直接求解动力学修正方程的 ROM 构建方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion Detection of a piecewise linear crack with one incident wave Randomized quasi-Monte Carlo and Owen's boundary growth condition: A spectral analysis Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows Exponential time propagators for elastodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1