Purification Efficiency of Two Ecotypes of Wetland Plants on Subtropical Eutrophic Lakes in China

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-19 DOI:10.1007/s13157-024-01787-7
Yingmo Zhu, Kangning Shu, Ke Yang, Zhe Chen
{"title":"Purification Efficiency of Two Ecotypes of Wetland Plants on Subtropical Eutrophic Lakes in China","authors":"Yingmo Zhu, Kangning Shu, Ke Yang, Zhe Chen","doi":"10.1007/s13157-024-01787-7","DOIUrl":null,"url":null,"abstract":"<p>The accelerated eutrophication rate of (sub)tropical lakes is a major environmental problem. Constructed wetlands are considered as an effective method to purify water bodies. However, the removal rate of nitrogen (N), phosphorus (P) and other nutrients by wetland vegetation is quite different, and the continuous observation of plants and water ecosystems is required. In this study, the growth curves of two subtropical wetland plants, <i>Phragmites australis</i> and <i>Zizania caduciflora</i>, and their absorption effects on N and P in constructed wetlands were studied. The results showed that the growth curves of the two wetland plants were similar, reaching the biomass peak in July to August, and the cumulative absorption of N and P by plants had the same trend with the change of biomass. The N and P concentration of plants reached the peak in March to April, with higher concentration in <i>Phragmites australis</i> than that of <i>Zizania caduciflora</i>. At the end of the growing season, i.e. around October 20, the accumulated absorption of N and P by plants reached the maximum, which was the optimal time for harvest of subtropical wetland plants. Thereafter, the residues of plant litter entered the water, causing the recovery of N and P concentration in the water body, therefore affected the purification function of wetland. There is a strong correlation between the water purification efficiency and plant growth. With the increase of biomass, N and P accumulation in <i>Phragmites australis</i> and <i>Zizania caduciflora</i>, the N, P content and chemical oxygen demand (COD) in the water of wetland showed a significant decreasing trend. The removal rates of N, P, COD and suspended substance (SS) in the constructed wetlands with <i>Phragmites australis</i> and <i>Zizania caduciflora</i> as the main plants were 95%, 96%, 82% and 86%, respectively. In general, the purification capacity of <i>Phragmites australis</i> is slightly higher than that of <i>Zizania caduciflora</i> and precipitation had positive effects on the pollutants concentration of wetland water. The results provide scientific basis for plant selection and management of subtropical constructed wetlands.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13157-024-01787-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The accelerated eutrophication rate of (sub)tropical lakes is a major environmental problem. Constructed wetlands are considered as an effective method to purify water bodies. However, the removal rate of nitrogen (N), phosphorus (P) and other nutrients by wetland vegetation is quite different, and the continuous observation of plants and water ecosystems is required. In this study, the growth curves of two subtropical wetland plants, Phragmites australis and Zizania caduciflora, and their absorption effects on N and P in constructed wetlands were studied. The results showed that the growth curves of the two wetland plants were similar, reaching the biomass peak in July to August, and the cumulative absorption of N and P by plants had the same trend with the change of biomass. The N and P concentration of plants reached the peak in March to April, with higher concentration in Phragmites australis than that of Zizania caduciflora. At the end of the growing season, i.e. around October 20, the accumulated absorption of N and P by plants reached the maximum, which was the optimal time for harvest of subtropical wetland plants. Thereafter, the residues of plant litter entered the water, causing the recovery of N and P concentration in the water body, therefore affected the purification function of wetland. There is a strong correlation between the water purification efficiency and plant growth. With the increase of biomass, N and P accumulation in Phragmites australis and Zizania caduciflora, the N, P content and chemical oxygen demand (COD) in the water of wetland showed a significant decreasing trend. The removal rates of N, P, COD and suspended substance (SS) in the constructed wetlands with Phragmites australis and Zizania caduciflora as the main plants were 95%, 96%, 82% and 86%, respectively. In general, the purification capacity of Phragmites australis is slightly higher than that of Zizania caduciflora and precipitation had positive effects on the pollutants concentration of wetland water. The results provide scientific basis for plant selection and management of subtropical constructed wetlands.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国亚热带富营养化湖泊两种湿地植物生态型的净化效率
亚热带湖泊富营养化速度加快是一个重大环境问题。人工湿地被认为是净化水体的有效方法。然而,湿地植被对氮(N)、磷(P)和其他营养物质的去除率存在很大差异,需要对植物和水生态系统进行持续观测。本研究研究了两种亚热带湿地植物--葭(Phragmites australis)和菰(Zizania caduciflora)的生长曲线及其在人工湿地中对氮和磷的吸收效果。结果表明,两种湿地植物的生长曲线相似,均在 7 月至 8 月达到生物量峰值,植物对氮和磷的累积吸收量随生物量的变化趋势相同。植物的氮和磷浓度在 3 月至 4 月达到峰值,葭藻的浓度高于柘树。在生长季节的末期,即 10 月 20 日左右,植物对氮和磷的累积吸收量达到最大值,这是收获亚热带湿地植物的最佳时机。此后,植物残体进入水体,导致水体中氮、磷浓度恢复,从而影响了湿地的净化功能。水体净化效率与植物生长有很大关系。随着葭藻和茭白生物量的增加、氮和磷的积累,湿地水体中的氮、磷含量和化学需氧量(COD)呈显著下降趋势。以苇草和水飞蓟为主要植物的人工湿地对氮、磷、COD 和悬浮物的去除率分别为 95%、96%、82% 和 86%。总体而言,葭草的净化能力略高于柘树,且降水对湿地水体污染物浓度有积极影响。研究结果为亚热带人工湿地的植物选择和管理提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1